
0]1 F] ILE Coll)

Systems

Optimization

Laboratory

TV, i

DERIVING A UTILiTY FUNCTION FOR
THE U.S. ECONOMY

aby

George B. Dantzig,
Patrick H. McAllister and John C. Stone

TECHNICAL REPORT SOL 88-6

ATIC 1988

9DT!C

JUL I i 9I I

i.i

fo 71'- r

Department of Operations Research
Stanford University
Stanford, CA 94305

88 7 11 076



SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATION RESEARCH 0

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4022

DERIVING A UTILITY FUNCTION FOR
THE U.S. ECONOMY

by

George B. Dantzig,
Patrick H. McAllister and John C. Stone

TECHNICAL REPORT SOL 88-6

April 198

DTIC
ELECTE
JUL11 U

Research and reproduction of this report were partially supported by the National Science
Foundation Grants DMS-8420623, ECS-8617905, and SES-8518662; U.S. Department of
Energy Grant DE-FG03-87ER25028; Office of Naval Research Contract N00014-85-K-0343,
Electric Power Research Institute Contract RP5006-1, and the Center for Economic Policy
Research at Stanford University.

Any opinions, findings, an conclusions or recommendations expressed in this publication are
those of the author and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States
Government. This document has been approved for public release and sale; its distribution is
unlimited.

", - q - p ; ? p 1 i • • 1 "1 ". - "1 ' 1 "(. 1 ". , l' ,l. , - % . " - - , - .L) , • , , ,.. .. 44-



DERIVING A UTILITY FUNCTION FOR THE U.S. ECONOMY

George B. Dantzig, Patrick H. McAllister and John C. Stone1

January 1988

A13STRACT "..... __
Given a general dynamic equilibrium formulation of a time staged model, seek'conditions

on the distribution of utility functions of individuals which imply the model is equivalent to a
mathematical program. , . ..

Gorman and others long ago have observed that Engel curves of average consumption as a
function of income at fixed prices are remarkably linear over a broad range of income of interest
which tapers off at both ends of this range. W reproduce this phenomenon by assuming 4-W ' .. -
that a general polynomial of the second degree has enough parameters (coefficients) to globally
represent the utility functions of individual consumers, and')the distribution of utility functions
that individuals have is independent of the income they happen to have. W hieve the latt 2 -

assigning values to the parameters of the utility functions by a random drawing with replacement 7 -'

from a "population urn contaning a representative sets of the parameters. Withen derive the'
functional form of the per capita demand function and necessary and sufficient conditions for its
integrability.

Finally, we shomw in the context of the time staged model, that when the population is not too
polarized as to its tastes at fixed income levels, a concave objective function always exists, which
maximized subject to the physical flow constraints, implies the equilibrium conditioks. ",, >L.

Introduction

Given a general dynamic equilibrium model, a long standing problem is finding conditions on
the distribution of utility functions of individuals which guarantee that the model is equivalent to
the problem of maximizing a concave objective function of the aggregate consumption variables
subject to the physical constraints of the system. When the two are equivalent, the powerful
software of mathematical programming can be applied to efficiently solve large scale equilibrium
problems. j-'" j jI

Our approach differs from past ones by the way we assign values to the set of a parameters of
the utility function of individuals. We first assume the distribution is independent of the income
individuals happen to have. We achieve this independence by placing representative vectors of
parameters values in an "urn" and assigning them to each individual at an income level by a
random drawing with replacement from the urn.

1 The authors wish to thank Kenneth Arrow, Gerard Debreu, Robert Dorfman, Dale Jorgenson ,

and Lawrence J. Lau for their helpful comments. .
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In the context of a time-staged equilibrium model, we are therefore not interested in deriving

the functional form of the per capita demand function of some future time period, since it is now

a random function, but we are interested in expected demand as a function of prices and per

capita income. By the law of large numbers, the expected per capita demand will differ from actual

future per capita demand insignificantly for a population the size of the U.S. Accordingly we will

be seeking conditions on the distribution of representative utility function parameters in the urn

which imply that these expected per capita demand functions are integrable.

An early controversy which arose in theoretical work on consumer demand concerned the

shape of Engel curves which express at fixed prices average consumption of a particular category of

goods (such as food) as a function of income level. Survey data strongly suggest that these curves

are nearly linear over a broad range of income levels, see Graphs 1-8 at the end of this paper.

Some authors have conjectured that his must be true because the underlying demand functions of

individuals must be linear, or nearly so, at fixed prices over a broad range of individual income

available for consumption.

For example, Gorman in his 1953 paper (9] remarks: "A great deal of work has been done on

Engel curves particularly by Allen and Bowley and Houthakker. The work of Allen and Bowley

was based on the assumption that the classical Engel curves for different individuals at the same

prices were parallel straight lines, but this has been rejected in work of Houthakker in favor of a 2
doubly logarithmic form. However, the earlier assumption fits the data remarkably well." [22,231. S

Gorman, in the article cited above, finally showed conclusively that average linear demand

could only happen if the underlying individual demand functions are linear in income at fixed

prices.

Since linearity of individual demand functions in income at fixed prices was considered unlikely

for theoretical reasons, researchers have concentrated on using the logarithmic functional form

following the traditional approach to demand analysis found in the pioneering work of Henry

Shuitz, Richard Stone, and Herman Wold, [24,25,26].

The logarithmic utility functions were generalized by Christianson, Jorgenson, and Lau [28,30] 5
who proposed that utility be approximated by a function which is quadratic in the logs of the
-nnsumption variables. Certain difficulties in translating from individual demand to aggregate

demand which were present in their early work were overcome by a more general theory which

the authors Jorgenson Lau and Stoker call "exact aggregation", s,'e [11]. They consider a model

in which each individual has a trans-log utility function which depends on "attributes" of the

individual as well as consumption itself.

By placing restrictions on the way that these attributes enter into the utility function, they

were able to find a model in which demand exactly aggregates thereby deriving per capita and

aggregate demand as a function of prices and a certain class of symmetric statistics of the income

distribution, which includes more than just the mean or total aggregate income. In this way they
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are able to obtain an exact aggregation result without appealing to linearity in individual or average

demand at various income levels.

Our approach is motivated theoretically by the observation that when the utility functions
of individuals are polynomial expressions of the second degree in the consumption variables, the

demand function of each individual will be linear over a broad range of income at fixed prices
tapering off to zero at the poverty end as more and more individuals, in order to maximize their
utility, have to set more and more components of their consumption vector to zero, and leveling

off at the high income end as more and more individuals have income sufficient to purchase their
"satiation" vector. Consistent with empirical observation, this implies that expected demand
functions (Engel curves) are linear over a broad range of income (used for consumption), and this
in turn implies that the expected per capita demand is linear in per capita income over a broad

range of per capita income.

There is no obvious reason why these steps should lead to an expected per capita demand A.

function for a given time period t that is integrable; or if integrable within a period why 'his should
imply, in the context of a time-staged equilibrium model, that one can replace the dual price

constraints by an objective function which can be maximized subject to just the primal system
of physical-flow constraints to obtain the equilibrium solution. Indeed from Arrow's Impossibility

Theorem, we know that seeking an aggregate utility function for the economy over time could be

a futile quest since in general it need not exist [1, 5, 18, 27J.

Conditions for integrability of a demand function have been given by Slutsky, see Varian [19].

We derive a necessary and sufficient condition for integrability based on the derived form of the

expected aggregate demand function for period t.

It all depends on how the parameters of the utility functions of individuals in urn are dis-
tributed. One measure of how much utility functions U' differ from one another is to compare H',

where H' is the price cross-effect matrix of the i-th utility function in the urn with A any positive

definite matrix used for comparison (such as average H') by forming fi = fI-/ 2 HiH-1/2 . We

prove, in a worse case scenario, that if pi < 3 + \/8 - 5.83 for every i, where pi, is the ratio of the L
largest to smallest eigenvalue of ft', then the expected per capita demand function is integrable.

Moreover, the greater the variability of orientations of the axes of the ellipsoids p'Ht'p = constant

the higher is the bound for pi.

Outline of the Paper

In Part I, we derive the form of the expected per-capita demand function for each discrete time
period t; in Parts II and III we derive necessary and sufficient conditions for its integrability; in Part
IV, we present the time-staged dynamic equilibrium model for consumers and producers/investors.

In Part V, we develop a first-order approximation to the expected aggregate demand and utility

functions for a period which allows one to explicitly express these functions and estimate their

parameters. Finally we estimate the parameters of the expected per capita demand function and
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the per capita utility function using survey data and test the theory empirically by using it to

predict time-series data of per capita consumption of various item., when prices and per capita

income are given.

Even when the latter exists, if the numeraire for normalizing period t prices is not suitably

chosen, we prove in the context of time-staged equilibrium model that a utility function that drives

the economy over time need not exist. However, when a numeraire is suitably chosen, the dynamic

equilibrium model is integrable.

Prices normalized by this numeraire differ very little in practice from those obtained by scaling

them so that their average price is unity, see last column of Table 4. Thus, from the viewpoint

of the investor, these prices are equally acceptable for calculating the rates of return of various

investment possibilities. If it is, then it is possible to restate the dynamic equilibrium problem as

a mathematical program and to use non-linear programming software like MINOS to optimize the

primal system [151.

To test the theory, fits were made to survey data (see Table I) and tested by predicting the

consumption pattern of final consumers for the years 1961 to 1982 as a function of prices and per

capita income used for consumption (see Graphs 9 to 16). We also report on an experiment that

suggests the approximation may be a very good one even if the set of utility functions U' in the

urn differ markedly from one another.

Motivation of our Research

Our presentation here arose out of our efforts beginning in 1975 to build a macro-economic

model of U.S. to assess the long- term effects of modernization, innovation, foreign competition,

energy prices, and conservation on the growth of various economic sectors, GNP, and per capita

income. PILOT, is a multi-time period model, quite large, with a data base of over 70,000 tech-

nological coefficients, [4]. Its principal weakness, as we see it, lies not with the numerical results

from various scenario runs (the physical growth of the economy appears to be quite reasonable),

but with our inability to justify the aggregate utility function which we had devised to increase the

standard of living and had been using as the driver as though the U.S. were a planned economy.

To be more precise, the partial derivatives of this somewhat arbitrarily chosen utility function,

interpreted as prices, implied a behavioral response of final consumers to prices and a behavioral

response of producers/investors also to prices, which are almost certain to be out of kilter with

what their observed behaviors would be in the real world.

These considerations led us recently to reverse the process and to reformulate PILOT along

classical economic lines as a dynamic equilibrium model that satisfies the behavioral responses

of final consumers to prices given their income for consumption, and the responses of produc-

ers/investors in choosing activities that yield at least a minimum rate of return. From a mathe-

matical point of view, this is not a dramatic change, since the set of Kuhn-Tucker conditions 1121
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that must be satisfied at the point which maximizes 'ie utility function, are quite analogous to the

Arrow-Debreu conditions [1,5] that must be satisfied at an equilibrium point. The main difference

is that the general equilibrium problem belongs mathematically to the more general class of com-

plementarity problems which require for solution combining the dual system of price constraints

along with the primal system of physical constraints in one big simultaneous system, [3, 6, 8, 13,

17]. For a problem the size of our PILOT model, this combined systCm is too large to solve directly

and much of our research has been concerned with finding efficient ways to use mathematical pro-

gramming software, like MINOS [15], to solve the system, including ways to decompose the system

into smaller problems and to use their solutions to iteratively converge to an equilibrium.

A fundamental question that has concerned us is reconciling the "prescriptive" (normative)

view of the initial formulation with the "descriptive" (behavioral) view of the dynamic equilibrium

formulation. To be precise, do the realistic behavioral assumptions of an equilibrium model serve as

a driver promoting reasonable growth and well being of the economy when it has the potential for

such growth? We will see later that the dynamic equilibrium formulation implies under reasonable

conditions an objective for the economy the form of which makes it evident why growth in the

economy will occur if it has potential for growth.

51



PART I:
DERIVING THE PER CAPITA DEMAND FUNCTION FOR PERIOD t

Notation

For discussion involving a fixed period, we will usually omit the time subscript. Thus the con-
sumption vector of the j-th consumer in period t is denoted by Xj = Xt; his budget or personal
income for consumption is denoted by I = It measured in period t undiscounted dollars. Expected
per capita consumption, income, and utility are denoted by Xt, It, Ut and the corresponding ag-
gregates by bold face Xt = Pt X, It = Pt" it, Ut = Pt. UTt where Pt is the size of the population
in period t.

We will use the symbol I to denote the identity matrix to avoid confusion with I and I which
refer to income. The inner product of a column vector v with itself will be denoted by v2 = v'v. The
symbols a, 6, 8, A denote scalar constants. L.H.S and R.H.S. are abbreviations for left hand side
and right hand side of an equation or an inequality relation. The symbol - means approximately

equal.

Utility Function of Individuals

The first assumption we make is that each final consumer has a utility function that is quadratic
in the consumption variables and that he chooses his consumption vector by maximizing his utility
function subject to his budget constraint. This specific functional form may be viewed as a. second-
order global approximation to whatever may be his true utility function.

Assumption 1. Individual j in period t has a utility function U'(X), measuring the value j
attaches to having a consumption vector X, which can be represented by a general quadratic
function of the form 'N

Ui(X) = 2(M 3S')'X - (X)'M (X) + Constant (1.1.0)

where vector Si > 0 and matrix M i is symmetric and positive definite, hence non-singular.

Without loss of generality, we may rescale the matrices M3 so that, letting e' = (1, 1,..., 1),
their inverses Hi have the property

e'He -- Hj(k, f) = 1, Hi = (M) -  (1.1.1)

Letting Constant= -(S) ,M , Si,

U'(X) - -(S7 - X)'M 3 (S3 - X) < 0, for all Si - X A 0. (1.1.2)

It is easy to see U3(X) in (1.1.2) is unconditionally maximized when X = S'. Therefore, it is natural
to assume that S is strictly positive and to refer to Si as the "satiation" vector of individual j. We61
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view the income I of an individual as an "authorization" to expene up to that amount for actual

consumption. Should it happen that an individual's budget I > p'S3 , he maximizes his utility by
buying his satiation vector S3 . The unexpended amount I - p'Si, in this case, is not used.

Form of the individual demand function. The budget constraint and nonnegativity constraint

for individual j in period t at fixed prices p are:

'X < I, X > 0, p>O. (1.2.0)

Subject to (1.2.0), j maximizes his utility function Ui(X). The vector X which maximizes Uj(X)

subject to a budget constraint is denoted by Xj. This is a special case of a quadratic programming

problem [3]. We distinguish three cases: The high income case, the standard case that defines

the range of income of interest, and the low income case. In the high income case, I > p'S and
individual j maximizes his utility by buying his satiation vector, i.e., X j = Si. Otherwise, the
budget constraint is tight and the procedure begins by forming a Lagrangian and setting its partials

to zero,

a[UV (X) - 2(p'X)]/X = 0, (1.3.0)

which is then solved to determine X3 as a function of A; the expression for XJ as a vector function

of A is then substituted into (1.2.0) with the budget tight and solved for A. If Xi > 0, then this

is the standard case. The low case occurs, by definition, when the budget I < I' is so low that j
maximizes his utility on the boundary of the non-negative orthant X > 0 by setting to zero one or

more components of X.
We will loosely refer to the income levels between I* = max I' and /* = minp'Si as the

range of income of interest. It is the range of income for consumption in which no individual j
maximizes his utility on the boundary of the orthant X > 0 or has sufficient income to buy his

satiation vector Si . This range depends on the prices p. We think of this range as very broad, *
representing extreme poverty and I** as being very rich. In the context of the full model (Part
IV), it is possible to have all individuals receive at least a minimum fixed consumption vector, so

that Xi(k) = 0 should not be interpreted as j going without food, for example. Income, in this
context, means income for purchases above this floor.

For the "standard" case, we substitute the quadratic expression for Uj(X) given by (1.1.0) "
into (1.3.0) and differentiate partially:

M (S. -X) = A P. (1.4.0)

Solving for Si - Xj:

Si - xi = A. H1p, where H1 = (M-)'. (1.5.0)

Note that the inverses Hi = (Mi)- l exist and are also symmetric and positive definite. We can

now use the tight budget constraint to determine A. Multiplying (1.5.0) by p' orA the left and

7 I
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setting pXi = 1, we can solve for A and substitute back into (1.5.0). This yields (1.6.0) below, the

demand function of individual j as a function of prices and income I where A, equal to the term in

parentheses, is positive if the budget I is less than the income p'Si required to buy the satiation

vector Si . Note p'Hi'p > 0 follows from Hi being positive definite. It is easy to see that (1.6.0)

satisfies two properties of demand functions which hold when the budget constraint is tight: (a)

p'X' = I and (b), Xi remains invariant if we rescale prices p and income I proportionally.

Theorem 1.1. The demand function of individual j, for fixed prices p, is a piecewise linear function

of consumption income I. (i) For a range that includes the "range of income of interest", the demand

function is given by

Si- Xi= P s -- H p i I-'P ! I < Z =p s . (1.6.0)

(ii) For < I, one or more components X(k) = 0. As 1 -- 0, Xi 0. (iii) For I> I," = p'S ,
the budget constraint is slack and Xi = Si for all I > I*.

Proof. The theorem is a restatement of a well known result from quadratic programming. We

therefore omit details and sketch only important steps in the proof. The Kuhn-Tucker conditions

for testing whether X = X(I) is optimum consists in partitioning the inequalities generated by

taking partial derivatives into a set f0 that are tight under the current solution and [, those

that are not. These are in 1 - 1 correspondence with components X1 > 0 and Xk = 0. Call
the corresponding index sets k also [0 and fl. Suppose for two income levels I = a and I = /

the corresponding index sets (1 are the same for the two optimum solutions. Then the convex

combination X = AX(ct) + pX(fi), I = Aa + p/f, is -optimal for all A + / = 1, (A, A) > 0. It follows

that X is linear in I over segments where 02 sets are the same, there being at most one segment for

each such 02. For other 02 there may be only one I. The former are the broken line segments and

the latter are the values of I corresponding to the break points. Since the number of different [2 is

finite, there are a finite number of breakpoints and broken line segments. I

Expected Demand Function for Individuals at the Same Income Level. Our next step is
to derive the functional form of the Engel curves, namely the average demand for some item k for

all individuals with the same income level I as a function of I and prices p. For this purpose, as
we already noted, we assume that the utility functions which people have are independent of the

particular income which they happen to have. Suppose there are nj individuals j at income level I.

We need to have a way to assign the parameters (Si, Hi) to their utility functions independent of

their income I, next find Xi = X which maximizes their utility subject to their budget constraint

I, and then average Xi to compute the average demand vector as a function of I and fixed prices

p.
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Population Urn. We can achieve this independence of income by selecting in the parameter
space (S, H) a representative set of n possible points (S', H i) and writing them as labels on n

balls, i = (1,.. ., n), and placing the balls in an imaginary urn which we call the population urn. In

making a random drawing with replacement from the urn, we assume each (S', H i) is equally likely

to be drawn and assigned to individual j. If it is desired to make it more likely to choose certain

(S', H'), this could be done by weighing the distribution of (S', H') in the urn or by replication

of certain of the balls. For convenience we have made this distribution discrete and n finite, but a

general probability measure could be used instead. 'p
'2/

Assumption 2, the Population Urn Assumption. The utility function which individual

j happens to have, is uncorrelated with I, his personal income for consumption. We achieve

this by assigning to j a utility function with parameters (Sj, Hi) = (S', H') where (S', H') is

randomly drawn with replacement from an "urn"; we also assume the distribution in the urn of

the "satiation-level" parameters S' is independent of the distribution of the price "cross- effect"

parameters H' = (M )-1 .

For any of the nj individuals j, with income I, we denote their expected S " and X by

= S' and eX j 
- X' respectively. Our assumption that the distribution of utility functions

does not depend on I implies that this expected .9 is the same for all I and therefore .'- S

where S is the arithmetic mean of the S' in the population urn.

A special symbol &iS' is used to denote the arithmetic mean of S' in the population urn. It

has the same value as the expected value of a single random drawing of S' from the population

urn. Likewise, we denote the arithmetic mean of any function 0(Si, H') for i = 1,. . . , n in the

population urn by eil(S', Hi) = (1/n) r p(Si, H'). For the nj individuals j that have an income

I in the range of income of interest, max Ii = I* < I< = min I*, we know that (1.6.0) holds

no matter what (S', P ) has been assigned to j from the urn. Therefore taking the expectation of

(1.6.0) we obtain (1.7.1) below.

Theorem 1.2. For fixed prices p = pt and for all individuals j whose income level I satisfies

max I* = I* < I < I * = minp'S' for (Si, Hi) in the population urn, their expected consumption I.
vector 1' is a linear function of I:

f"= ei(p'Si)[7 P H]p - Ii[- Hjp (1.7.1) o

= (P= - )41 H']p, = Si . (1.7.2)

Proof. Our assumption that the parameters (Sj, H3) assigned for individual j is chosen by a

random drawing from the population urn independent of income I means, for fixed prices, that the

expected values of the terms of (1.6.0) are those of (1.7.1); in particular the factor multiplying I

in the second term does not depend on . Therefore (1.7.1), at fixed prices, states that the Engel

9
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curves which express each component k of X' as a function of I are linear in I at fixed prices in

the range I* < I < 1**. Our additional assumption about the independence of the distributions of

S' and H' in the urn implies (1.7.2) because

&,(p'S')[p, -=H'p = &(p'S')F, 1 pHjp = (p'S)&i 1 I'Hjp . (1.7.3)
POHS p p'J' IpHIp

We denote the difference between the expected demand at incomes pS and pS - 1 by
1

G(p) = &[- H ']p (1.8.0)

It follows that the difference between the expected demand at saturation incomes p'S and I is

J -G(p), where J = pS - I is the additional income required to reach an income sufficient to buy

the satiation vector. Substituting (1.8.0) into (1.7.2), a more complete statement of Theorem 1.2

is

Theorem 1.3. For fixed prices p = pt, then (i), for all individuals j whose income level I is in the

range of income of interest, their expected consumption vector X' is a linear function of I:

- = (p'S - I).G(p), where maxI,* = I < I < r* = minp'Sl. (1.9.0)

(ii) i.s I decreases below I*, it is more and more likely individuals j with this income will maximize

their utility by setting components of X' to zero and eX' = c -* 0. (iii) As I increases beyond

I**= min p'S', it is more and more likely individuals j will maximize their utility by buying their

satiation vectors and C X' - X will level off to S.

Corn ent. In Part V, we will present the empirical data of average consumption as a function

of income level for eight broad consumer categories Food, Clothing, Housing, Household Operation,

Transportation, Recreation, Personal Care, and All Other. We will see that the form of these

Engel Curves is generally consistent with this theoretical result that the expected demand vector

of individuals with same consumption income I is a linear function of I over the "range of income

of practical interest," namely max IP* < I < min p'S'.

Per capita demand as a function of per capita income. Assuming fixed prices in period t,

the expected per capita demand function is derived from the expected demand of persons at various

income levels by a convolution with the income distribution. Let X1 (k) = Ck(I) be the expected

personal consumption per year of item k by individuals at the same income level I. Let 0(I) be

the income distribution. The per capita consumption of item k and corresponding expected per

capita income per year are given by
C'

(k) = f (I). Ck()dI, (1.0.)

1= f, (I). IdI, (1.10.2)

10



ILI'
where X(k) denotes component k of X. The symbol for expected per capita consumption vector

is to be distinguished from X1 which is the expected consumption vector of individuals j whose

income level is I. It would appear that the correspondence between X and I depends on the

distribution of 4; in fact it does not for a broad range of I.

Theorem 1.4. If Cj,(I) is a linear function of I, then independent of the distribution of income

0(I), X(k) = Ck(I), i.e., expected per capita consumption of item k is a linear function of per

capita income 1 and this linear function is Ck(I).

Proof. Let Ck(I) = a + bI. Substituting into (1.10.1) and noting f 4(I)dI = 1, yields X(k) =

a + b!= Ck(). I

Comment. The hypothesis that Ck(I) is a linear function of I is only true by Theorems 1.2 and

1.3, for a restricted range of income which we have referred to as the "broad" range of income of

interest, maxi = I* < I < I** = minpS' for (S', H') in the population urn. Let us assume

the distribution of income for consumption in the population is above the extreme poverty level

I* = max I:* and below being very rich, I** = min pSi. As time goes by, per capita income 1 will

change (and likely increase) and the distribution of income 0'(I) about I will change. As long as

people at the same income level at the same prices buy in the same way in the future and the

income distribution change is not so drastic that some j have income I below their I, or above

their pS, Theorem 1.4 states that Xc(k) is the same linear function of I as X'(k) is of I for some

range P < r < *. Therefore, we have established:

Theorem 1.5. For fixed prices p = pt, (i) expected per capita consumption X is a linear function

of per capita income r for a certain range of income 1; namely:

I W - pS -/-) . G(p), P < r < P"  1111 *

where G(p) = H(p) • p and H(p) &(pHip)' - H' is a symmetric positive-definite matrix whose

elements depend on p and not on I.

(ii) If! < P, then it is more and more likely that some individual's income I < Ij I and these

j will maximize their utility by setting some components of X " to zero; as 0 -0, 0 -*0. (iii)
If I > i**, then it is more and more likely that some individual's income I > p'Sj; these j will

maximize their utility by buying their satiation vectors S; for sufficiently high I, X will level off

toS.

Note especially that our predicted result of linearity does not depend on the shape of the
income distribution or how this changes as per capita income I increases in the future providing it %

does not rise so high that some j have income I such tht p'Si < I or decreases so low that some

13 > I. Implicit, of course, is the assumption that tastes don't change with time. If they do, there

is no problem adjusting the model for trends in taste.

11
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The empirical studies of Avriel and McAllister [2], based on special assumptions about how

income distribution will change relative to ! in the future are consistent with the results we have

just derived without their special assumptions.

".1
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PART U1:
NECESSARY AND SUFFICIENT CONDITION FOR INTEGRALITY

OF THE EXPECTED PER-CAPITA DEMAND FUNCTION

Our immediate objective is to derive a necessary and sufficient condition that an inverse ex-
pected per capita demand function and utility function exist for period t when the expected demand
function given by (1.11.1). The condition for existence is closely related to one given by Slutsky,
see Varian [19]. Our proof is specific to the demand function given by (1.11.1). It is therefore as-
sumned in the discussion that follows that per capita income is in the "range of income of interest"

< << .

Definition of a Utility Function. In order for 0(X) to qualify as a per capita utility function,
we let v = 9 - X and require Z(v) = -0(X) to be a convex function twice differentiable (except
possibly at v = 0) which attains a minimum subject to a budget constraint p'X = I, or equivalently
p'v = J, where J = p'S - 1, at a unique finite point v = v*. Therefore v* is a function of p and J
which we denote by S - X = v(p, J) and call the latter the demand function associated with the
utility function UT(X).

Conversely, if we are given a demand function 9 - X = v(p, J), such as

.- X=v=J. (p'H'p)- .H'p where J=p'S- I, (2.1.0)

we inquire if there exists a utility function with which the demand function is associated. If yes,
we say that the demand function is integrable.

We will, however, restrict the utility functions considered from now on to those homogeneous
in v of degree +1. To conform with this definition, we redefine the utility function (1.1.2) for an
individual to be Uj(X) = -[(Si - X)'M3(S y - X)]'/ 2 . We call a function a per capita utility
function, 0(X) = -Z(v), v = S - X, if (i) Z(v) is twice differentiable for all v (except possibly
at v = 0); (ii) Z(v) is a homogeneous function in v of degree 1 along every ray, i.e., Z(av) = aZ(v)
for all v, a > 0; (iii) Z(v) is strictly convex between any two points v1 $ v2 satisfying the budget
constraint pv = 1:

AZ(v 1 ) + IZ(v 2)> Z(AVt + pV2) for all (A > 0, u > 0, A + p = 1); (2.2.0)

and (iv) Z(v) > 0 for all v 0.

We first show that Z(v) under the second definition qualifies as a utility function under the first
definition. We then seek a necessary and sufficient condition that U(X) exists when the demand
function is given by (2.1.0). The diagram on the next page outlines the logical dependence of the
various theorems upon one another which yield or are implied by this condition.

13



Special Definition of aUtility Function

Theorem 2.1 on propertiesof Z(v) =-U(x)

GIVEN Z(v) exists

Theorems 2.2 & 2.3 Theorem 2.9

Inverse demand
function exists

(Theorems 2.4 - 2.6
on existence

and nonexistence.)

Necessity, Theorem 2.7 Sufficiency, Theorem 2.8

+ (q'v)> o

forall qoa.p

Theorem 2.1. min Z(v) subject to p'v - 1 is attained at a finite point v = v* and is unique.

Denoting v(p, 1) = v*, the expected per capita demand function associated with Z(v) is S - =

v(p, J) = J. v(p,1 ) where J = (p9 - 1).

Proof. Assume on the contrary that inf Z(v) is not attained at any finite point. In this case, there

exists a strictly decreasing sequence

Z(v, ) > Z(v ) > ... > Z(v)) > ... > infZ(v) (2.3.0)

such that Z(vt) --+ infZ(v) _! 0 as fIvtJl --+ +0o, and such that pvY = 1 for all t. A subsequence

can be chosen, so that normalized vectors v'/11v'11 --+ vo, where v0 # 0 and Z(v° ) > 0. For this

subsequence, due to homogeneity of Z(v),

Z(W) = I1V'11" Z(V'/IV tIII) - 11t11 " Z(&°) -. +00, (2.3.1)

contradicting that Z(vt ) is a strictly decreasing subsequence.

14
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Therefore Z(v) attains its minimum at either a unique finite point v* or attains it at least

two finite points vi $ v'. Now v' and v2 cannot be on the same ray and both satisfy the budget

constraint pv = 1. If not on the same ray, then by (2.2.0), any convex combination of AvI + 'U ..,%

satisfies the budget constraint and yields a lower Z(v), contradicting Z(V 1 ) = Z(v 2 ) are minimum

values.

To prove v(p, J) = J.v(p, 1), following the same proof as above, we know that min Z(v) subject

to a budget constraint p'v = J or '/J)v = 1 is attained at a unique point, v4 = v(p, J). Let

V1 = v(p, 1) and assume on the contrary:

Z(J . v1 ) = JZ(V1 ) > Z(v 4 ) = JZ(v4/J), (2.3.2)

implying that v4 /J, which satisfies pv = 1, maps into Z(v4/J) < Z(v') a contradiction. U

We defined Pt as fixed period t prices. Let p be a rescaled price vector that maps into v by the

relation: v = G(p). We have the following definitions and relations:

- = G(p) , (2.4.0)

G(p) = et(p'Hp)- ' . H'p (2.4.1)

H(p) = ei(p'H'p)- 1
. H' (2.4.2)

p'v 1 for all p 0. (2.4.3)

Two lemmas about G(p) and H(p):

Lemma 2.1. Elements (k, t) of the matrix H(p) = i(p'H'p)-'H' are homogeneous functions of p

of degree -2; H(p) is square, symmetric, positive definite, moreover p[H(p)]p = p'G(p) = p'v -1

for all p 0 0.

Proof. By definition, element (l,t) of H(p) is i(p'H'p)-1 H't and is equal to element (t,k)

since Hke = Hk. It is positive definite because the assumed positive definiteness of H i im-

plies q'[H(p)Jq = & (pHp)-'(q'Hiq) > 0 for all p 0 0, q # 0. In particular p'[H(p)]p =

6,(p'H'p)- 1 (pW'Hp) = 1. 3

Lemmaa 2.2. The elements of the vector v = G(p) = H(p)p = &i(p'H'p)- 1 . H'p are homogeneous

functions of degree -1. The matrix av/p' is square and symmetric.

Proof. We define element (k, t) of avlapF as 8av/Opt where vk is k-th component of v and pt the

t-th component of p. From (2.4.0), (2.4.1):

= (p'H'p)' Hk.p, (2.5.0)

where Hk. denotes the k-th row of H'. Clearly vi is a homogeneous function in p of degree -1.

Taking partials,
494 Hk (H .p)(y H . + (2.5.1)v

7 t pHip (p'Hip)2  " Pk (2.5.1)
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where the t-th column H', = (Hi.)' and Hh, = H' because H' is symmetric. I

Theorem 2.2. The unique v that minimizes Z(v) subject to the budget constraint p' = I satisfies

the first-order condition: 1az1Z --- (2.6.0)

Conversely, given any v = v*, there exists a unique p such that min Z subject to p'v = 1 is attained

at v*, namely: I aZ
1O f1 =p. (2.6.1)

Proof.. Forming the Lagrangian Z(v) - A(p'v) and setting its partial derivates to zero, we obtain

aZ/av = A . p where A is chosen so that pv = 1. Applying Euler's Theorem for homogeneous

functions to Z(v) of degree +1:

Z - 'V(-) -- v'Ap) = Av' = = A, (2.6.2)

whence (2.6.0). Conversely, given v = v*, the p defined by (2.6.1) satisfies VIp = v'(aZ/av)/Z
Z/Z = 1 by Euler's Theorem. Suppose now for p given by (2.6.1) that min Z(v) subject to p'v 1 1 is

attained at some other v = v° : v* satisfying (2.6.0). Then since Z(v) is convex and differentiable,

both v° and v* satisfy necessary and sufficient conditions (2.6.0) to be global minima points,

contradicting uniqueness established in Theorem 2.1. 1

Theorem 2.3. A necessary condition for the existence of a utility function 1(X) = -Z(v), asso-

ciated with the demand function

S-X =J.G(p), J=pS-I, (2.7.0)

is that the inverse function of v = G(p), exists, namely,

P=G-p (V) Z ,v ' =p1, v=S-. (2.7.1)

Proof. If v = G(p), then by (2.4.3) p'v - I for all p. If a utility function uT(f) = -Z(v) exists

associated with the demand function (2.7.0), then minimizing Z(v) subject to p'v = 1 satisfies

(2.6.0). Since Z is a function of v, (2.7.1) states that p can be expressed as a function of v when

p'v = 1. Hence a necessary condition for the existence of a utility function is that v = G(p) have

an inverse function p = G-(v). I

Comment. There are two ways that the function v = G(p) can fail to have an inverse. The first

is: given v, there exists no p that satisfies the equation v = G(p). The second way is: given a

particular v, there is more than one p satisfying the equation. We will prove that first way can

16



never happen and the second way can. However, under certain conditions that we will specify later,

there is a unique solution for all choices of v : 0.

Theorem 2.4. Given any vt $0, there are always one or more p 6 0 satisfying

=G(p) = 6iW'p)'H'p, v0o. (2.8.0)

Proof. Let i = (1,..., n) and let 0 = { 0, ' X = 1) be the n - I dimensional simplex.

We now define a continuous mapping A -- p E ): Choose any A E 0; let A = E' AiH'; determine

P = nH-lv. Note that A is positive definite because it is a convex combination of positive definite

matrices H; hence H-1 exists; hence P can be computed. Next, form X- = (VH'P)-l > 0 for

each i and set lp = i/ En, p" It is not difficult to show that the mapping A --+ p is continuous.

According to Brouwer's Theorem, a fixed point A0 _- A0 exists. For this A0 = 1 determine

= /nf-lv where H = EnA1?'° , (2.8.1)

= A = (',H/E-,i9,H , (2.8.2)

nv = =A Hj (2.8.3)
= [E(fHi) -i•

Ii |

= (1/n)E'(p'Hp)- '. H'p = G(p). (2.8.4)

where p = En (PH'P)- whence (2.8.0). 3

Theorem 2.5. Given certain v and certain H, it is possible there exist more than one p satisfying

= G(p), implying G-'(v) does not exist in general.

Proof. Let n = 2 where i = 1,... ,n and let m = 2 where matrices H' are m x m. Let

H = 2.0 -. ) 2 0.2 .
H1 - .- . ' 2.0 v = 0.)---.0

6'-. 0.5'

In the case of n = 2 and m = 2, it is not difficult to show that there are three different p

satisfying v = (1/2) '(p' IIp)-. .H'p generated by three different choices of A° and corresponding

A0 = I - '\ , see (2.8.1) and (2.8.2). One of these three values of AO can be real and the other two

conjugate pairs, a ± ,v/T, or all three can be real. For the special case (2.9.0), there are three

real solutions:

p = (1, 1), p - (.48382, 1.51618), p (1.51618, .48382).

Since these solutions satisfy v = G(p), all three satisfy p't- 1. 3

17



Theorem 2.6. For some choices of Hi, v =G(p) has an inverse p=- 1 (v).

Proof. Assume H' =Afor all i. It is easy to verify that a p which satisfies (2.10.0) is given by
(2.10.1):

i=(0'0-p17RP. (2.10.0)

p = (V -v) (2.10.1)

The RHS of (2.10.1) is G -2(v) because, as we will now prove, this solution is unique: Assume, on
the contrary, #p also satisfies (2.10.0):

V = ('l) 1 (2.10.2)

Substituting this expression for v into (2.10.1), we obtain p = a contradiction. I

When v = G(p) has an inverse p = G-1 (v), we will makce use of the following lemmas.

Lemma 2.3. v = G(p) and p = 0'(v) are homogeneous functions of degrees p =-I and

1/p = -I in p and vi respectivelys

Lermma 2.4. If the matrix av/ap, is non-singular at p, then its inverse ap/av' exists.

Proof. 8v/Ov = identity = [c~/ap'] - [Olp/8v'] from the theory of implicit functions.

Lemma 2.5. The matrix ap/av' is symmetric.

Proof. This follows from Lemmas 2.2 and 2.4.I

Lemma 2.6.

v= -[oalaep; v = -p'[av/ap'] (2.11.0)

P= -18I/8V]V ; P, = -t/[ap/9V'j. (2.11.1)

Proof. The first part of the Lemma follows from Euler's Theorem for homogeneous forms of degree
-1, see Lemma 2.3, and the second part follows from the first part and symmetry, see Lemma 2.5.

Lemma 2.7.

p_ P+(p'V)2 =0 (2.12.0)

Proof. By (2.11.0), the first term is -pvt and p'v I by (2.4.3). 3
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Theorem 2.7. Given v = G(p), a necessary condition that a disutility function Z(v) exists is

q V-q +(q't)2 >0 for al q 0cp, p$O. (2.12.1)

Proof. By definition of a utility function, its correpsonding disutility function satisfies Z(v) > 0

for all v : 0 and a2ZI/V2 is a positive semi-definite matrix such that:

aZV=O , a2- u >0 , for all u av. (2.12.2)

We have shown by (2.7.1):

p (Z/ v)/Z. (2.12.3)

At any v 0 0, ap/ecv' exists since ap/Ov' = (1/Z)a2 Z/1V 2
- (1/Z)2 (aZ/8v)2 and

Z(v) $ 0. From a 2 Z/8vI2 = [az/av]/av' and (2.12.3):

-Z P - . Z + (pp). Z (2.12.4)

Z. p-, + pp'] (2.12.5)

By (2.5.1), the inverse of ap/av', namely v/p', also exists, at any point v 9 0, p 0 0. Therefore,

for u$A a, we can find a q satisfying '.

avu,=Vq q --. (2.12.6)

Z(v), by assumption, is strictly convex except along rays. We therefore require

, 2Z , 49
0 < U -3-V2u = Z[u u + (u'p)] for all u $,v, v: 0, (2.12.7)

q -+ (q') for all q96.p, pO0, (2.12.8)

by (2.12.6). Whence (2.12.1) since Z > 0. 1

Theorem 2.8. A sufficient condition that the inverse function p = G-'(v) exists when

v = G(p) = Cj(pH'p) -1
. Hip is

q- 2- q+(q'v)' >0 forall q, q#A .p, p#O. (2.13.0)

Proof. We first show that the function W(p), defined by

logW(p) = -Ilog(p'H'p), pOO, (2.13.1)
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under the hypothesis (2.13.0), is (a) convex; (b) W(p) > 0 for p # 0; (c) its Hessian a 2 w/ap ,
is strictly positive definite for all directions q : a p; and finally, (d) p'(a2 W/8p 2 )p - 0. Clearly

W(p) > 0. The first partial is:

1 = i(p'Hp)- H'p, (2.13.2)

-- =W.G(p) . (2.13.3)

Letting v = G(p), aw/ap = Wv. Applying (2.13.3), the second partial is:

82 = W[(-)+ - V , (2.13.4)

,a2 W , + V)2] 
[ -p ]q = Wq(-')q + (q') ] >(2.13.5)

by hypothesis (2.13.0) and W > 0. Finally, if we replace q by p in (2.13.5), then by Euler's Theorem,

p'(aev/cp')p = p'(-v) = -1 and (p'v)2 - +1, whence

,a2 Wp f p-- 0. (2.13.6)

Conditions (2.13.5) and (2.13.6), and W > 0 imply that a2 W/8p 2 given by (2.13.4) is positive

semi-definite.

We now use the properties of W(p) to show for any given v there exists a unique p such that

v = G(p). Suppose not true and for some given v 0 0, there exists two vectors p - and p =

such that v = G (p) is satisfied. Consider now the problem of

minW(p) subject to v'p = 1, (2.14.0)

where v is given and p is variable. Since W(p) is convex, we find its minimum at some p = p* by

setting the partials of the Lagrangian W(p) - A(v'p) to zero obtaining

aw (2.14.1)
ap

where A W because W = p'(8W/8p) = p(Av) = (p'v) = A. Equation (2.13.3) and (2.13.1)

together expresses aW/8p in terms of p while (2.14.1) places a condition on p to qualify as a

minimizing p*. Equating (2.14.1) with (2.13.3), we see that p* satisfies v = 6i(p'Hp)- l 
. Hip, and

therefore p* = 1p and p* = are both optimal.

But minimizing of a convex function W(p) subject to linear constraint v'p = 1 can only have

global minima. Therefore, W(p) and W(P5) are both global minima and W(P) = W(A). Vectors P

and 3 cannot lie on same ray and both satisfy the budget constraint (2.14.0). Therefore, by (2.13.5),

in the direction q = p - from p to , (p - )'[8 2W/ap](p - p) > 0 for all p =P + A3, A + =

1, (A,p) > 0. Because of strict convexity along this segment, W(p) < W(P) = W(P) holds; also

P'v = p'v = Pv = 1 holds, contradicting p and P5 both being minimizing points. |
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Theorem 2.9. A necessary and sufficient condition that there exists a utility function

J(.X) = -Z(v), v = S - X, associated with the expected per capita demand function

(p' - I i (p'H'p) H'p for period t is

q --q + (q'v)2 > o, for all q :0c.p, p t o. (2.15.0)

The function Z(v) is the mapping v --, Z defined by the following procedure:

Step 1. Find the unique p satisfying

= Ci(p'Hp)-1
. H'p (2.15.1)

Step 2. For any fixed scalar -y > 0, find Z satisfying

log-yZ = -1,F log(p'H'p), -Y > 0, (2.15.2)

Proof. Necessity of (2.15.0) has already been demonstrated. Therefore we assume (2.15.0) is true;

by Theorem 2.8, p = G- 1 (v) exists, hence p of (2.15.1) is unique. Our objective is to show that

2(v) = -yZ(v), -y> 0, is a disutility function associated with v = G(p). To qualify by our definition

as a disutility function, we must show properties A, B, C, D, E below:

A. 2 (v) > 0 for all v 0 0. This follows by rewriting (2.15.2),

= [(p'H'p) • (p'H 2 p) ... (p'H'p)]- 1/2, > 0, for all p 0 0. (2.15.3)

B. 2(v) is homogeneous in v of degree = 1. Proof: Note v is homogeneous in p of degree -1 by

(2.15.1) and Z is homogeneous in p of degree -1 by (2.15.3), implying Z is homogeneous in v of

degree 1.

C. Minimizing 2(v) subject to the budget p'v = 1 implies the demand function v = G(p). Proof:

According to Theorem 2.3, the inverse demand function associated with minimizing Z(v) subject

to p'v = 1 is
, la = p  (2.15.4)

where the left hand side is viewed as a function of v. We must therefore verify in the case when

v = G(p) and Z is defined by (2.15.1) and (2.15.2) that the left hand side of (2.15.4) is indeed

G-I(v). From (2.15.2):

1 OZ a log 2 (- 1/2)a[6. log(p'H'p)] ap
I- ' av , -- H' ]' 0¢p (2.15.5)Zap av

6[i(p'H'p) -  . ,l aI

= -Vt.(',L =av (2.15.6)
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where ap/av' refers to the functional relation between p and v implied by v = G(p) and where

the last step follows from Euler's Theorem for homogeneous forms, see (2.11.0). Therefore, the p

generated by (2.15.4) is the same one that is related to v by v = G(p).

D. The function 2(v) is convex. Proof: Following the steps of Theorem 2.7,

f a2 ^- 2 , U = OvU - 2u = 2[q -q + (q')>0, u 5=--q, q Aap, p AO. (2.15.7)

According to our hypothesis (2.15.0) and Z > 0 by (2.15.3), the Hessian [a2g/aV2 ] is strictly

positive definite in the direction of any two points not on the same ray. Note (2.12.0) holds along

a ray.
I

E. General Z(v) = -t2(v) where -y > 0 is a scalar constant. Proof: By Theorem 2.3 and (2.15.4),

both general Z(v) and .(v) satisfy

iaz - a 2 (2.15.8)
Z L9 8tav

Integrating

log Z = log +log -Y, -Y> 0 (2.15.9)

whence Z = -- Z. From now on we will assume -y = 1 andZ=Z.

Theorem 2.10. A necessary and sufficient condition that there exists a utility function U(X) = ',

-Z(v), v S - X, associated with the expected per capita demand function ' - X = (p'S - I) .
6i(pH'ip) - 1 • H'p for period t is

""j - 2 "'p)1 + Hp > (2.16.0)

for all p 6 0, q 0 ap.

Proof. Substituting into (2.15.0), v 6 (,(p'H'p) - 1
. H'p. Noting (2.5.1),

"__[ _ 2 ___ p)__ ] (2.16.1)
-'l 2 Hi)2

form which we obtain (2.16.0). I
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PART I:

TWO SUFFICIENT CONDITIONS FOR INTEGRABILITY

Having found a necessary and sufficient condition that a per capita utility function exists,
namely

-2 q p + .] >0 (3.1.0)
(p'Hip)l p'Hip

holds for all p : 0, q j a. p, we now seek conditions on H' in the population urn that guarantee
this. We prove two important theorems which show that the distribution of H" in the population

urn would have to be highly polarized as in the example of Theorem 2.5 in order for condition
(3.1.0) to fail. It is not difficult to show if Hj = ft for all i that (3.1.0) holds. Let H be any

positive definite matrix, for example /7 = eH' where EEHke = 1. One measure of how much Hi
differs from ft is to form 1H' = ?-I/

2 H'Hl- 1/2 and compare R' to 2,, the identity matrix. The

eigenvalues of I are all unity and the ratio of its hightest to lowest eigenvalues is unity. Therefore,
we can study how much the ratio of the highest to lowest eigenvalues of ft' has to differ from unity
before condition (3.1.0) is violated. P

Indeed we will show in Theorem 3.4 that this ratio would have to be greater than 3 + V/8 for
each i in order for condition (3.1.0) to fail. But even this will not cause failure when the axes

of various ellipsoids pHip = constant are randomly rotated to some extent with respect to each
other; if the rotations are uniformly distributed (or nearly so) in R', then we will show in Theorem
3.5 that regardless of what the ratio of highest to lowest eigenvalues of R' are, condition (3.1.0)
will hold. In other words the distribution of the price- cross effect matrices H' would have to be
exceptionally highly skewed for a per capita utility function to fail to exist.

Theorem 3.1. Let ft be any positive definite matrix and let 11' -= ft-/ 2 H'ft- 1 / 2 , then the

necessary and sufficient condition that a utility function exists is equivalent to finding conditions

on R' so that for all p #0 and q ap:

p p (p'f/ip)2 + [e' 'p O (3.1.1)

Proof. The matrix /t'/2 is not unique. There is a way to choose it so that flu/ is symmetric,
namely 1"'/1 = EDI/2 E' where E is the matrix of eigenvectors of 1t and D is the diagonal matrix
whose diagonal is the eigenvalues of 11. For properties of E see proof of Theorem 3.3. Substituting
p = f~-/ 1 , q - /t-l/ 2 4 into (3.1.0) and then relabeling (P ,4) as (p,q) in order not to have

proliferation of symbols we obt.in (3.1.1). 3

Comment. If H' are all close to ft = eiHi, then At' will be close to CiIfi = 1, the identity. If
/1' = 2 for all i, condition (3.1.1) reduces to showing p~q2 - (p'q)2 > 0 for all p $ 0, q # O,p # aq I
where p2 ',q2 denotes p'p, q'p respectively. But the latter is always true because it is the same as
p2 q2 sin 29 where 0 is the angle between vectors p and q.
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Theorem 3.2. The necessary and sufficient condition (3.1.1) that a utility function exists is equiv-

alent to finding conditions on i' so that for all p 0 0, q $ 0, Pq = 0:

-j ( >0 0. (3.1.2)

p'Hjip (pljip)2 Op'H

Proof. The only difference between (3.1.1) and (3.1.2) is the requirement that q be orthogonal to

p. Because of homogeneity of (3.1.1) we can rescale p and q so that p2 = 1 and q2 = 1. Let 0 be the

angle between p and q so that p'q = cos0. Note that the sign of the L.H.S. of (3.1.1) is the same

if we replace q by -q so that we need only consider 0 < 0 < 7r. Therefore, the condition q t ap

translates into sin 0 $0. We replace variables (p, q) in (3.1.1) by p, q, and 9 where

p=p, q=qsin9+Pcos, cos9=p'q where sin $0 . (3.1.3)

It is easy to prove when p2 = 1,q 2 - 1 that

'p q=O, 2 :i, 0= 2. (3.1.4)

Substitute (3.1.3) into (3.1.1). After much cancellation of terms and factoring out of the common
factor sin2 0 > 0, we obtain (3.1.2). Because (3.1.2) is homogeneous in p and q, we no longer require

p2 =1,q2=i. I

Comment. The last bracket expression of (3.1.2) is not likely to contribute much to the positivity

of the L.H.S. For example, if f = 6,H' and all R' = & A' = I, the identity, the last term would
vanish because pq = 0. Therefore, if we drop the second bracket, it is sufficient to only consider

conditions on ft' that guarantee that the first bracket expression is positive. As an extremum or
worst case scenario, we will look for conditions on R' that will guarantee for every i that ti, the

corresponding pair of ith terms in the first bracket, is positive:

ti /'q) (flp 2 2(q/ p) > 0 for all 2 6 0, 42 6 0 L ich that P'q = 0. (3.1.5)

To simplify the discussion, we assume all the eigenvalues of F1' are distinct. If not they could be

made so by a slight perturbation of H i.

Theorem 3.3, a sufficient condition. A utility function exists if for each i:

op > 0 for all p'q = 0, p2 
= 1, q2 

= 1 (3.2.0)

where D = D' is the diagonal matrix whose diagonal elements are < ... < d'm, the m distinct

eigenvalues of 17'.
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Proof. All the eigenvalues of the positive-definite matrix 1' are positive. Let these be , > 0.

To simplify the notation we will write d, - d and denote their corresponding eigenvectors by

E,. V. rescaled so that (Ek)3 = 1. Then by definition

I'Ek= -d.I.E; EI?'=de. E'.ZI, (k,I)=,...,m (3.2.1)

where I denotes the identity matrix. Therefore EI'jE = dEE. EAd. " Since d : d,

for all 1 k, it follows that tEk = 0. Therefore the matrix of eigenvectors E = (El, E2 ,..., E.)

is an orthonwinal matrix, i.e., E'E = I, and

E'R'E= D. (3.2.2)

Substituting € - Eq, p = Ep into (3.1.ur ) and rescaling so that p2 = 1, q2 - 1, p'q = 0 we

obtain (3.2.0). I

Theorem 3.3. A utility function exists if ,. r every i ihe diagonal matrix D = D' of eigenvalues

of f' hzo the P'ropet rty min ti > 0 where

ti = 1)2 >0, (3.3.0)
(,+ 1)2

where pi is the ratio of the highest to lowest eigenvalues of HI, or equivalently when

pi <3+ 2 2- 5.83 3.1)

Proof. Condition (3.3.1) follows by rewriting (3.3.0) as (-p 2 + 6p - 1)/(p + 1)2 and determining

the range of p where y= -p 2 +6p- 1 > 0. To prove (3.3.0), we minimize t given by (3.2.0) subject

to p2 = 1, q' = 1, p'q = 0. For the p,q that yields this minimum, let

p'Dp=at>O and q'Dq= >O, p'q=O. (3.3.2)

Under the conditions p'Dp = a and q'Dq = $, minimizing t reduces to

max(q'Dp)2  subject to (3.3.2) . (3.3.3)

From the properties at the maximum, we will derive a relationship between p'Dp and p2, and q'Dq

and q2 that will allow us to minimize ti subject to p'q = 0, p2 = 1, q2 = 1, see (3.2.0).

Fact. q'Dp $ 0 at the maximum. Proof: We assumed diagonal D satisfies 0 < d2 < ... < din.

Given a > 0 and f > 0, it is easy to find p and q satisfying (3.3.2) and q'Dp $ 0. Therefore, because

everything is bounded and continuous, a maximum exists with (q'Dp)2 > 0. We can now form the

Lagrangian

L = (q'Dp)2 - A(p'Dp) - p(q'Dq) - 21,(p'q) (3.3.4)
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S.

and set eL/Op =0 and aIL/aoq =0, obtaining

(q'Dp). Dq= A Dp+ ,q, (3.3.5)

(q'Dp) • Dp= .. Dp+ vp, (3.3.6)

Fact: v 6 0. Proof: Since qeDp A 0, it follows v 3 0 because vx 0 would imply by (3.3.5)

that p and q are proportional and p'q 0 0, contrary to hypothesis.

Fact: A > 0, p> 0. This can be seen by multiplying (3.3.5) and (3.3.6) by p and q respectively:

(q'Dp)2 = Aa = p. (3.3.7)

Multiplying (3.3.5) and (3.3.6) by q and p respectively:

(q'Dp)p = A(q'Dp) + vq2 = (q'Dp)/a + ,q 2  (3.3.8)

(q'Dp)o = p(q'Dp) + vp = (q'Dp)3 /I + vp2 . (3.3.9)

Hence

(q'Dp)a# = (q'Dp)' + cvq2  (3.4.0)

(q'Dp)ap = (q'Dp)3 + l 2  (3.4.1) p

implying

(p/a/) = (q2 /p) and a =,6 when p2 = q2 = 1. (3.4.2)

We now rewrite (3.3.5) and (3.3.6)

[(q'Dp) -D - vI.]q = ADp (3.4.3)

[(q'Dp) . D - vI]p = pDq (3.4.4)

where I is the identity matrix. Solving (3.3.7) for A and (3.3.8) for v and substituting into (3.4.3):

{(q'Dp). D - -L [a6(q'Dp) - (q'Dp)] • I}q = Dp, (3.4.5)

and an analogous expression if we solve (3.3.7) for p and (3.3.9) for v and substitute into (3.4.4).

We can now factor out (q'Dp) 0 0, obtaining (3.4.6), and by analogy (3.4.7):

{aq 2 D - [ac - (q'Dp)' I}q = q2(q'Dp) . Dp (3.4.6) ,

{I pD - [af- (q'Dp)2 ]21}p= p(q'Dp) . Dq (3.4.7) "5.

where the expression in brackets, are the same in (3.4.6) and (3.4.7) since aq2 = 8p2 .Noting that

the product of diagonal matrices is commutative, multiply (3.4.7) by q2 (q'Dp)D and interchange
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on the L.H.S. the order of q2 (q'Dp)D and the bracket term; finally substituting L.H.S. of (3.4.6)

for q2 (q'Dp) . Dp, we obtain

{aq2 D - [aft - (qDP)21]1}
2q = p2 q2(q'Dp)2 D2q . (3.5.0)

Expanding and rearranging terms and noting (aq2 )2 
- pq'l:

[02q( {l - (q'Dp)2 )}D 2 - 2(aq2 ){Ca - (qDp)2 } D - (cft4 - (q'Dp)2} 2 ]q = 0. (3.5.1)

We observe that the common factor {a# - (q'Dp)2} # 0 by (3.4.0) or (3.4.1) and the fact that

v 0. Therefore factoring out {cr4- (q'Dp)2} 0 0 from (3.5.1), we obtain (3.5.2) and an analogous

expression, (3.5.3) after noting cq 2 = &2:

[p q2 D2 - 2(ciq2 )D - (cip - (qDp)2 )Ilq = 0, (3.5.2)

[p2 q2 D2 - 2(aq2)D - (ct# - (qDp) 2)Ilp = 0. (3.5.3)

Vector relation (3.5.2) holds for each component qj of q. Since q2 6 0, one or more components

qk # 0. Let qk 6 0 for some k, then for this k:

(pq 2 )d~k - 2(aq2 )dk - [a# - (q'Dp)] = 0. (3.5.4)

Let y (p2 q2 )z 2 - 2(ciq2)z - [aO - (q'Dp) ] be a parabola expressing y as a function of x. Now
y = 0 can only hold for at most two values of x= d, i.e., for say k = 1 and k = m. And from

(3 :rnly the same k = 1 and k = m can possibly have p, t 0, the case of only one k being

ruic ut because say k = 1 only, then both P, $ 0, q, 0 0; and all other pi = 0, q, = 0. But this

contradicts pq = 0. Representing these two components of p and q in polar coordinates and noting

p q = 0:

p1 =+lpIcosO, pm =+UpIsin8, and pi=0 for 1<i<m, (3.6.0)

ql=-IlqIlsinO, q.= +IlqIJcosG, and q =0 for 1<i<m, (3.6.1)

subject to p'Dp = a, q'Dq = P, pq = 0. Therefore

a = p'Dp = p?[di cos 2 9 + d,, sin2 91 (3.6.2)

= q'Dq = q2 Id, sin2 0 + dm cos 2 01. (3.6.3)

Whence, noting p2 /a - q/Ifl, by (3.4.2),

d, cos 2 0 +dm sin 2 p = d, sin2 # + d, cos0 0 , (3.6.4)

(din - di)[Cos2 0 - sin2 61 = 0, (3.6.5)
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and therefore since d, 6 dj,

C08 2 9 , sin2 9= (3.6.6)
2' 2'

c = p 2 [di + dm1/2, = q[di + d.]1/2, (3.6.7)

(qDp) = p q sin 2  cos2  (dm - dC)2 = a(dl - di) 2  (
q sin 0(d,, - d, (d + d.) 2 (368

Recalling a = f from (3.4.2),

t= - 2 01'6(d -di ) 2 = 1 2 (d.m-d )21 (3.6.9)a a2(d. + di) I (d. + dl) 2 jI-

We left open the question, which pair of the distinct eigenvalues d, < d2 < ... < d,,,, to select; we
show now that the best choice for min t is in fact the ones we chose, namely d, and din. Let j > i
and y = (di -- di)/(di + di), then ay/adi = 2di/(d + d,)2 > 0 and ay/ad, = -2di/(d + d.)2 < 0.

Therefore the ratio increases as di - dm and also as d, -* d1 . Hence the lowest ti is obtained for

i = 1, and j = m.

From (3.6.0) and (3.6.1), optimal p, = cos(7r/4), pm = sin(7r/4), and p, = 0 for 1 < i < in; and
also q, = - sin(ir/4), q. = cos(ir/4), and q, = 0 for 1 < i < m. Therefore the minimal solution to
(3.2.0) is [

in 2d -- ] (3.7.0)

Let p = d,,,/d 1 be the ratio of the highest to lowest eigenvalue, then

min t =1 2(p - 1)2 = (_p2 +6p- 1)/(p + 1)2 (3.7.1)

which is positive for all p in the range

(3 + 2,F) <p< 3 + 2v'5.83. 1 (3.7.2)

e,
Comment. In order for a utility function to exist it is sufficient that 4t, > 0. Therefore the

condition that min ti > 0 for each i is a worse case scenario that is far too stringent. We know for
case of a population of two people that it is possible for ti < 0, and this is true even if the term

[e&(qH'fIp)/(pHp) 2 is added to ti, see counter example of Theorem 2.5. In a large population
such as U.S. we would expect the set of representative ellipsoids p' A' p = constant in the urn which
can be rotated into one another to have to some extent randomly distributed orientations of their

axes. If we rotate all such ellipsoids to Hi for the lowest i, say H, the effect is to rotate the p and
q to a random position. Therefore, we need to consider for each such H, the average or expected

value of

S(pIq)=p, a[p'Hp -2(--) p p2 1, =1, p'q=O, (3.7.3)
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where p and q are "randomly" distributed in some way. We, of course, do not know what is the

true distribution of orientations of the axes of the ellipsoids p'H'p = constant that can be rotated
into one another. We will prove a theorem when these orientations are uniformly distributed about
the origin in Rm . While this assumption of "uniformly distributed" is not realistic, the purpose of

Theorem 3.5 is to illustrate that the more the orientations vary relative to one another, the higher

the bound p < 3 + 2V + A can be where A -* +oo.

Theorem 3.5. If the orientations of the axes of the ellipsoids eHtp = constant that can be
rotated into any particular H' = H are uniformly distributed (or nearly so), then tp,,qf(p, q) > 0
where f(p, q) is defined by (3.7.3); moreover eiti > 0, implying that the expected per capita utility

function exists.

Proof. The proof consists in partitioning the set

S(p,q) = (p,qlp 2 = 1, q2 = 1, p'q = 0) (3.8.0)

of all admissible (p,q) into equally probable subsets T(R), each subset obtained from T(.T) by a
general rotation R in Rm . We will show that each T(R) has the property, that the average value
of f(p, q) found by integration over T(R) is unity. It then follows that the integration of f(p, q)
over S(p,q) will also be unity. As noted one of the subsets T(R) is the set T(I) which is defined

to be the set of all p = (cos,sinO,,0,...,0)' and q = (- sinO,cosOi,O,...,O)' for 0 < 0_ 27.

This "reduces" the subproblem to considering, in place of H,p,q, the truncated matrix and

vectors: Hu H12(

ft H12 H 221--[H12  H22] ' = (cos,,sinS), = (-sin,cos l). (3.8.1)

Let the matrix of eigenvectors of t be Bk so that E'HE = . The diagonal matrix whose elements
are the eigenvalues of H, namely 15(i, 1) = d2 > 0 and b(2,2) = d2 > 0. The matrix k is
orthonormal, hence we can rotate P and j in R 2 space by p = E$ and = E4 and 4. = 9 + a so that

the axes of the ellipsoid jTH = constant are parallel to the coordinate axes. After this rotation,
our problem reduces to showing for T(I):

2/2/[d, sin 2 0 + d 2  2 (d2 - d sin coo(3.8.2)

X d d, cos2 0 + d2 sin 2  1dco,-S2+d 2 sn d= 1. ( 22

where 3 = (cos 0,sin 0), = (-sin O, cos 0). Note we claim that relation (3.8.2) holds independent

of what the diagonal elements of/ 1happen to be.

We will prove (3.8.2) in a moment. We can obtain the subset T(R), by rotating the subset

T(r) by a general rotation R- ' about the origin in R m space. Conversely we can rotate T(k) into

T(1) by p = Rp, q = Rq, where R is an orthonormal matrix. The effect is to replace H by R'HR

and carry out the integration over T(.T) with respect to R'HR, instead of H, again obtaining unity.
Since each rotation R is equally probable, this means tp,qf(p, q) = 1 for (p, q) E S(p, q).
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We now show (3.8.2) is true. Substituting x = cos2 0 + p sin 2 9, and letting d2 = pdl, and

Q-- -p + (p + 1): - :2, (3.8.2) reduces to proving S

2 f 10tp+l- Q1/2 .
V , 2xQ1/2 X-2 Jd (3.8.3)

2t p+l(P dx 1 fP dx (P8.8.3)
- --- 1 Q 1 / 2  j~ Qi/ 2  i1 : d2

Denoting a + bx + c:2 - Q = -p + (p + 1): - X2 and noting (b2 - 4ac)1/2 - p - 1, we obtain from

a table of standard integrals:

1 ((p'pl):-2p)\" ;r
1 2 sin- \ ( : -) 1) i 1 2 (3.8.4)

dx = 1 sin- 1  =-2c-b
_q1 /2 = (_C) 1/2 (b2 - 4ac)l/2

Isn 2T P+1 '0 I r (3.8.5)

fJ0Q1/ 1/ 2 ~= P ' d f dx
72 x X x1 Q1/2 + 1  Q1/ 2

=0+ 2-1- -r /- i (3.8.6)

Substituting these evaluations into (3.8.3), yields ,q f(p,q) = 1, implying iti = 1 > 0, which

is sufficient for the expected per capita utility function to exist. 3

In this part we explored how close the price cross-effect matrices Hi must be to a typical t to

guarantee integrability. One measure of closeness is the ratio pi of the highest to lowest eigenvalues

ofj = f- 1 / 2 Hi )?- 1 / 2 . It is sufficient if pi < 3 + 2V2- for all i. Another measure is how spread

out is the distribution of orientations of the axes of the ellipsoids p'H'p = conatanti, the more

evenly spread the better. We found that the bound on pi is higher the more the tilts of the axes of 0

the ellipsoids p'/'p = constanti are uniformly distributed relative to one another. On the other

hand, if individuals i in the population tend to be highly polarized as to their consumption tastes,

as in the example of Theorem 2.5 with p1 = p2 = 91 a per capita utility function may not exist.
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PART IV:

INTEGRALITY OF THE MULTIPLE-PERIOD EQUILIBRU(1M MODEL

In Part III we established that the expected per capita for period t over the income range of
interest is integrable when the ratio pi of highest to lowest eigenvalue of A' is less than 3 + V
for all i, or less than a higher bound for pi if the axes of ellipsoids p'H'p = conat. are randomly
disposed to one another. From now on we assume that a utility function for each period exists, and

consequently an inverse demand function exists except for a scale factor to be determined. This
does not mean, however, in the context of a time-staged model for the whole economy, that there
exists an objective function which, when maximized subject to physical flow constraints, implies the
additional equilibrium conditions involving prices that must hold between the producer/investor
and final consumer. It depends on how the numeraire for prices in the rate-of-return formulas are
defined. It turns out that when the numeraire for normalizing prices is suitably defined, a concave
objective function for the economy exists.

Aggregate quantities corresponding to per capita quantities are denoted by bold face letters
Xt, St, It, Ut, Zt. They are obtained from It, St, it, Ut, Zt by multiplying by Pt, the size of popu-
lation in period t.

The mathematical formulation of the multi-period model is along the classical lines of an
Arrow-Debreu (1,51 or Scarf [171 equilibrium model, with no surprises except perhaps for the inter-
pretation of the profitability constraints of investors as rate-of-return formulae for selecting among
different investment possibilities. A typical production/investment activity j in period t has a
column consisting of three sets of fixed coefficients [Bt ("), - At (j), - Dt (j)]' per unit level of activ-
ity where Bt(j) is the input/output vector of capacities, resources, and flows of all items (goods)
needed for production and capacity formation in period t except final consumer items; At (j) is
the output/input vector of final consumer items in period t; and Dt(j) is the output vector of
capacities, resources, and intermediate goods left over or produced in period t for period t + 1. The
model is then defined by five sets of relations numbered (4.1.0) through (4.5.0). The first two we
refer to as the primal or physical flow constraints

In (4.1.0) below, Yt ? 0 is the vector of aggregate production and investment levels to be

determined in period t. In words, (4.1.0) states that the capacity, resources, intermediate items
BtYt, required for production and capacity formation at levels Y% cannot exceed the amount of
these items Dt- 1Yt- 1 left over or produced by period t - 1 activities for period t plus the vector

kt of these items exogenously supplied:

BtYt !5 Dt_1 Yt_ 1 +/k ; corresp. dual at > 0. (4.1.0)

The vector of dual prices corresponding to (4.1.0) is denoted by at > 0, and the slack vector which
turns (4.1.0) into an equation is denoted by 8t 0. According to the theory of Arrow-Debreu,
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production levels Yt and prices at will adjust until at equilibrium the complementary slackness

conditions &frt = 0 hold.

In (4.2.0) below, Xt > 0 is the vector of aggregate final consumption in period t measured in

physical units. In words, (4.2.0) states that consumption cannot exceed AtYt, the net output from
production after investment less, ft, any fixed demand (like government plus any minimum floor

provided to the final consumer and not paid for by income for consumption):

-AtYt + Xt _< -ft ; corresp. dual st 2! 0. (4.2.0)

The corresponding vector of normalized discounted dual prices is denoted by rt -> 0, and the slack

vector which turns (4.2.0) into an equation is denoted by *t > 0. At equilibrium kfrt = 0.

Dual Constraints: We assume that a numeraire has been selected in each period relative to which

prices for various goods are measured. If so we say the prices * are "normalized". Prices ort _ 0

and st _ 0 for the dual constraints are defined to be discounted period t prices; moreover irt is

defined to be discounted normalized period t prices. Thus xt = 6 it where the discount factor

is t- I and it is the vector of normalized prices. The vector of unnormalized period t prices of final N

consumer items is denoted by pt. We have no need for a symbol for prices on capacity, reserves,

and intermediate goods relative to unnormalized prices Pt but prices on these items relative to

normalized prices *t are denoted by at.

Relation (4.3.0) below, which we will derive in the comment, states that investors must receive

at least their minimum rate of return r = 6-' - 1 or they won't invest:

-Bita + Afrt _5 -Dut+i ; corresp. primal Yt > 0. (4.3.0)

The slack vector which turns (4.3.0) into an equation is denoted by Yt 2! 0. It is in 1 to 1

correspondence with primal variables Yt : 0. At equilibrium YtYt = 0.

Comment: Typically, the rate-of-return formula for a producer/investor j in period t is formed

by "pricing-out" the input-output vector of physical flows per unit level of investment activity j,

namely [Bt(j), -At(j), -Dt(j)]', and then looking for a discount factor 6 so that the discounted

cash flows is zero:

-'&t'Bt(i) + P8T ritA(j) + P t '+,Dt~i 0. (4.3.1)

Note the use of normalized prices ft (and &t relative to it), and not unnormalized prices pt. This

makes the rate-of-return formula inflation free meaning that the investor decides what his minimum

rate of return r should be without multiplying it by some factor for future inflation. It is assumed
that an investment must have a rate of return not less than a minimum rate r, or a d: unt factor

< 6 = (1 + r)-1 . This implies that investors will not consider investment opportunity j if its

> 6. On the other hand if its 8 < 6, the investment is profitable and the level Yt(j) will tend in

the "real world" to increase indefinitely. This puts pressure on capacities and resources that are in
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short supply, thus forcing prices and 9 up, until at "equilibrium" I = 1 + r. We express these

conditions by defining 4, (t) > 0 by

5t- 5 /(j-) + t-1 t- A(j) + 6ta+,Dt(j) + t(j) = 0 (4.3.2)

and requiring kt(J)" Yt(4 ) = 0. Substituting bt-lt = ot, =-t = 7t, 6tot+l = ot+l and

dropping the slack vector 4(j) _ 0, this relation is the same as (4.3.0). End of comment.

In (4.4.0) below, Ft(Xt) is the inverse of the expected aggregate demand function which we

assume now exists except for a scale factor to be determined that generates normalized period t

prices ft required by the rate-of- return formula (4.3.0):

-7rt + bt-F(Xt) !5 0 ; corresp. primal X > 0. (4.4.0)

The corresponding set of primal variables is Xt >_ 0. When Xt > 0, which is usually the case, this

relation becomes an equation. The slack vector that turns (4.4.0) into an equation is denoted by

X, _ 0. At equilibrium 1X = 0. The case when the inverse demand function does not exist will

be commented on in a moment.

The Complementary Slackness Conditions are that all variables be nonnegative and

=t'at 0, f't, = 0, Ytyt = 0, X~xt = 0. (4.5.0)

The model has t = 1,2,... ,T periods. For period t = 1, the term DoY is omitted in relation

(4.1.0). For period t = T, the term -o.T+DT is omitted in relation (4.3.0).

This completes the mathematical statement of the time-staged model. The remainder of Part

IV is concerned with deriving the functional form of the inverse aggregate demand function Ft(Xt),

and the utility function U(X 1 ,... ,Xt) for the full economy when it exists. Before doing so we note

that if the economy were driven by a utility function of the form U = E6t- Ut(Xt), the Kuhn-

Tucker conditions derived by maximizing U subject to primal physical-flow conditions (4.1.0) and

(4.2.0) would give rise to conditions (4.3.0), (4.4.0) and (4.5.0) where F(Xt) = aUt/axt, see
reference [121. If the latter conditions hold for all t we say the vector functions Ft(Xt) in the

context of the full model are integrable. If not, we say the model is non- integrable and no utility

function for the economy exists.

The dynamic equilibrium problem is well defined even for the case that the inverse demand

function for each period does not exist. In place of (4.4.0), we could state (a) the direct aggregate

demand function (4.6.0) below replacing It by irXt, and (b) the condition prices must satisfy when

they are normalized and discounted. It is outside the scope of this paper to discuss whether or not

an equilibrium solution might exist in this case.
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Value of Endowments

Since the aggregate demand function expresses consumption Xt = Pt • It as a function of
aggregate income It = Pt • it and prices, we reexpress Theorem 1.5:

St - X, = (w-St - It) .(irtHit) -1 .-H'rt, P.1 I< It P. it", (4.6.0)

where Pt is total size of the population in period t, St = - St, and irt = bt-lt are discounted

normalized period t prices Ift; aggregate income It is redefined to be aggregate income measured

in terms of xt instead of Pt. Before we place F(Xt), the inverse of this demand function, into the

model, we must first relate its It to the value of endowments. This is important because the model
does not provide any detail about who owns the endowments and therefore no detail about how

rents, wages, dividends, royalties, interest on loans, taxes, government doles, etc., get transferred to
the final consumers for consumption. We therefore need to be assured that the model nevertheless

implicitly provides a mechanism whereby the total value of endowments used for consumption are

in fact transferred.

Theorem 4.1. The value of endowments It used to produce consumption Xt in period t is exactly

equal to irtXt, the attained level of aggregate income used for consumption in period t.

Proof. In terms of the prices of the model, the value of endowments available to period t is
t(Dt-.Yt- 1 + kt). If we subtract off the value used for fixed consumption ir'ft, less ar'+,DtYt

the value passed down to period t + 1, the net by definition is It:

It = at(Dt-lYt-I + kt) - 7rt, - o'+lDtYt (4.6.1)

= otBtYt - at+ OtYj - 7rtt (4.6.2)

= tI(AtYt - ft) (4.6.3)

where (4.6.2) follows from (4.1.0) and (4.5.0), and (4.6.3) follows from (4.3.0) and (4.5.0). Therefore

by (4.2.0) and (4.5.0):

It = rX . l (4.6.4)

Thus, independent of the choice of the demand function, the primal conditions (4.1.0), (4.2.0),

the profitability conditions (4.3.0) and the complementarity conditions (4.5.0) imply that It = rtXt

holds.

Equivalent Concave Program

Having given the conditions that an expected per capita utility function and inverse of the

expected per capita demand function exist, we now assume these exist and set aggregate Xt =

Ptxt, St = P, Ut = Pt, It = Pt • It where Pt is the size of the population in period t. Let

p=G-(v) where v= St - Xt (4.7.0)
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It follows from (2.15.3), after rescaling -Ot (It) = Z for population size,

Ut (Xt) = - P . g,(p'H'p)- 1/ 2  (4.7.1)

where 9i denotes geometric mean of (p'Hp)-1 /2 for H', i = (1,... ,n), :a the population urn.

Theorem 4.2. The equilibrium problem is equivalent to solving the concave program
T

maxU(X) = E -US(XS) (4.8.0)
t=1

subject to (Xt,Yt) > 0 and the primal flow conditions t = 1,... ,T:

BtYt < 5 D_ 1Yt_ 1 + kt (4.8.1)

-AtYt + Xt _< ft (4.8.2)

providing (i) the primal problem is feasible, (ii) the geometric mean of (ptH'pt) 1 / 2 fort = 1, 2,..., n

is used as a numeraire for normalizing prices pt, and (iii) the aggregate income It = wt'Xt associated

with the optimal solution satisfies Pt . P < It < Pt - P*, and (iv) Xt > 0. Under these conditions

an equilibrium solution exists.

Proof. The condition that It is bounded between certain lower and upper limits is our way of

saying that the demand function of all individuals j is of the form Si - Xj = (7rS" - I)(7'Hj'r)- 1

Hir, which would not be the case if their budgets I were extremely low or extremely high. The

equilibrium problem obviously has no solution if the primal problem is infeasible. Here in Part

IV, we assume conditions of Theorem 3.3 hold so that a utility function for each period exists. By

definition of a utility function, Ut (Xt) are homogeneous functions of degree I in v = St - Xt which

are strictly concave in v except along rays with v = 0 as origin. The concave program under these

conditions has a finite optimal solution. The Kuhn-Tucker conditions for optimality turn out to be

the same as the dual constraints of the equilibrium problem, (4.3.0), (4.4.0), and (4.5.0).

If Xt > 0, then in the equilibrium model, by (2.7.1) and (2.15.3):

f = F(X,) = au,axt (4.9.0)

= az/aV = z. (p

= p/ .(p' Hip)112  (4.9.2)

= pt/ ig,(p ) H "2 1
. (4.9.3)

The denominator 9i(ptHip ) 1/ 2 may be viewed as a numeraire for normalizing period t prices pt.

Therefore if a feasible solution to the primal exists, an optimal feasible solution exists that

satisfies the Kuhn-Tucker optimality conditions, which is the same as saying an equilibrium solution

exists. The strict concavity implies that the values of Xt and r, are unique; those of Yt and ort

need not be unique. 3

Comment. The above way of normalizing p is different from the conventional one p/e'p where

= (1/r... 1/m) and m is the number of components in the vector p. Later on we will present

evidence why this way of normalizing pt is just as satisfactory if not superior.
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Theorem 4.3. The existence of a utility function U(X) depends on how the numeraire for period

t prices used by the investor/producers in the rate-of-return formulas is defined.

Proof. It is sufficient to demonstrate this when Hi R/ for all i. In this case G(7rt) = (7l'rt)- 1.
/Hxt and the expected aggregate demand function (4.6.0) simplifies to:

v = S - It = (rtst - It)(?r.AIr,) - I " Hi,. (4.10.0)

Dropping the income factor and rescaling rt as p, then for this special case:

V = (P'fp)- • fp, (4.11.1)

p = (v'Mv) - l. Mv, where M =/f-I . (4.11.2)

By (4.7.1) and (4.9.2), -Ut simplifies in this case to

- = Z = Wftp) - 1 / 2 = (v'Mv) 1 / 2  (4.11.3)

- [(S - Xt)'M(Sg - _X)1 1/2  (4.11.4)

By (4.9.0), (4.9.1), (4.11.3) and (4.11.2), v simplifies to

r = 6t-lf = 6t'Z p = 6t-t Mv/(v'Mv) 1 / 2  (4.11.5)

It is easy to show

(*It~f)i/ 2 
- 1. (4.11.6)

and therefore the implied numeraire for normalizing prices is (Ptf/pt)1/2 .

Because it = 2jrXt, the right-hand side of (4.10.0) is a homogeneous function in i of degree
0, implying that the inverse demand function F(Xt), that expresses xt in terms of Xt = Pt •. t,
while not unique, can be determined uniquely except for a scale factor. Note in Theorem 4.2
we choose one particular way, see (4.9.3). When Xt > 0, relation (4.4.0) becomes an equation
7t = 6t-lFt(Xt) where F(Xt) = *tt is defined to be normalized period t prices. We therefore ,

must choose the proportionality factor so that F (Xt) automatically generates normalized prices of

period t before discounting.

The numeraire for normalizing prices, however, can be chosen in more than one way. If investors

calculate their rate of return based on period t prices pt normalized by ft = pt/(P Ipt)11', for the 0

special case H' = R for all i, then for this per capita demand function simplification (4.10.0), the
inverse per capita demand function as we have shown can be stated explicitly and is proportional
to M(St -. X) or M(St - X,), see (4.11.2). Under this definition of normalization, F,(Xt) satisfies

for Xt > 0, M= fl - '

F1(X) [/2 • M(S, - X,), (4.12.0) I= (s, X,),M(S, -x, )/
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which is the same as (4.11.5) before discounting. Note in this case, i'f/i- 1 for all * = Ft(Xt)

since [Ft(X,)'fFt(Xt]I / 2 - 1 for all Xt. This way of normalizing Ft(Xt) does depend on the scaling

of M and we therefore would like the scaling of M to be such that base-year prices po = (1,..., 1)'

remain the same before and after normalization. This is why earlier, we required At to satisfy

1 = p /Hpo = E-ik Ze Rt, see (1.1.1).

On the other hand, if investors calculate their rate of return based on the vector of prices pt

normalized within each period so that their average price is unity, i.e. normalized by *t = pt/ePt

where ef = (1/r,..., 1/m), then the scale factor must be chosen so that normalized prices satisfy

ef* = 1. Ft(Xt) under this definition of normalization satisfies for the special case H' ft for all

F1(X) MM(St - X), for Xt > 0, M = H - 1. (4.13.0)

e St- Xt)

Note e'Ft(Xt) = 1 for all Xt. Moreover under this definition, F(Xt) does not depend on the

scaling of M. Also when the physical units for categories k are chosen so that base year prices

P0 = e = (1,..., 1)', they remain unchanged when we normalize in this way.

For the ft estimated by Hu Hui from empirical data [101 and Tabulated in Table 1, the normal-

ized prices *r = pt/(p'IFpt)1/ 2 had average values eirt for years t from 1961 to 1982 which differed

only slightly from 1, see the last column of Table 4, so that the investor would be indifferent as to

whether the denominator of (4.12.0) or (4.13.0) were used for numeraire.

We need only show that a utility function does not exist for this special case of the equilibrium

problem when prices are normalized by i = pt/pt and Ft(Xt) is defined by (4.13.0). Consider

a two period model so that we are maximizing the utility U(X) = U1 (X 1 ) + 6U2(X 2 ) subject to

the primal constraints (4.1.0) and (4.2.0). Further suppose X, has only two components so that

XI = (X 1 1 ,X 12 ). Let S1 = (S 1 1 ,S 1 2 ), S1 - Xl = (S11 - X 11 ,S 12 - X 12 ). Let ri = (W11,7r1 2 )

and M = [rnj] be a 2 x 2 symmetric positive definite matrix. Let S 1 - X 1 = V = (V1 ,V 2 ) where

V = S 1 1 - X 1 1 , V2 = S12 - X 1 2 . (4.14.0)

At a maximum the Kuhn-Tucker conditions 49U 1 /8X, = ir, should hold, see [12]. From (4.13.0),

= MV/D where the denominator P = eMV = (M,: + m 1 2 )VI + I(MI 2 + m 2 2 )V 2 . Therefore,

the following should hold:

aU 1/a 1 1 --=l = (n11V 1 + 12 V2 )/D, (4.15.1)

all/aX1 2 = ?r 12 = (M 1 2 Vl +m 2 2 V 2 )/. (4.15.2)

In order for a utility function to exist, the second partial S.-

a 2 U1 /aXIIaXI 2 = -a 2 U1 /axIav 2

computed from (4.15.1) should agree with

a2 U1/aX l 2aXlI = -a2U1/aXl2aV
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computed from (4.15.2) for all choices of X, I, X 1 2 . Setting these second partials equal to each

other, we should have

M12 (MiiVi + Mi2 V2 )(m 1 2 + M22)(1/2)
D + D 2

M- i 1 2  (m1 2 VI + 1 2 2 V1)(M 1 1 + M12)(1/2) (4.15.3)
___+ 924153

which reduces to (m 11 Mn22 - m12 )(VI - V2)/D2  0 0. But this does not hold for all choices

of (X 1 1 ,X 1 2 ) because M being positive definite implies M 11 M1 2 - 1 > 0 and (V - V 2 )

(S 11 - X 1 1 ) - (S12 - X 1 2 ) 0 0 for general, X, a contradiction. I

Our proof of non-existence of an objective function when prices are normalized in the conven-

tional way is only valid for two or more periods. In a one period case, the factor O'p normalizing

prices in the rate of return formula can be factored out and replaced by (pftp)l/ 2 . The new

problem is then equivalent to the original problem but in its new form a utility function exists.

However, in the multiperiod case, it is not possible to factor out e'pt and replace it by (ptfpt)1/ 2

without invalidating the rate-of-return relation (4.3.0).

Comment.

This ends the theoretical derivation of an objective function for the economy. We conclude that

the economy will grow if it has the resources and technology to grow and if it pays according to

the aggregate "utility" function to trade off movement of the consumption vector Xt towards the
"satiation" vector St of earlier periods t for considerably larger movements towards the satiation

vectors of later periods.

Recalling v = 9t - It, Xt = Pt "Xt, St = Pt St and It = Ptit where Pt is population size, we

have by Euler's Theorem for a general homogenou, utility function of degree 1:

-Ut = P . Z = Pt " (aZ/av')v (4.16.0)
-- apt" .ff' V = P . Vf'St - it) (4.16.1)

= fSt - it . (4.16.2)

Thus the disutility is the sum of the discounted additional aggregate income (measured in normal-
ized period t prices) needed to purchase the "satiation" vector over various periods t where the less

additional income required the higher the "standard of living".

Ideally normalized prices *t should have the property that a unit amount of income should enable

each individual j to purchase at prices ft goods X" whose utility to j is unity. In a certain geometric

mean sense this is true if ft are prices pt normalized by the numeraire GeometricMeani (Pt H'pt)'/ 2 .

For a representative set of individuals i with utility functions Ut(S', H') for (S', H') in the urn

and income P, let -Or = [(S' - X')'A4 (S' - Xi)]'/ 2 be the negative utility of optimal X' to i. It

is easy to prove

i= Jt(yIHirt) -1/2 (4.17.0)
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where J = S i  is the additional income i requires to reach satiation. Letting 9i denote

geoemitric mean, it follows that the 9,(-Utt)/19,(') is unity since 9j(*tH'*rt)1/ 2 is unity when p

9i(ptH'pt)1/2 is used as numeraire.
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PART V:

SIMPLIFYING AND ESTIMATING THE DEMAND AND UTILITY FUNCTIONS

Simplifying the Form of the Per Capita Demand and Utility Functions.

Our immediate goal is to replace the key factors G(p) = ti[(p'H'p)- ' • H'p] associated with

the demand function and -2 log Z = 6i log(pH' p) associated with the utility function by simpler

expressions whose parameters are easier to estimate and then give reasons why these approximations

may be very good. We will use the symbol -- to denote approximately equal.

Note that the demand function (1.6.0) of individual i is invariant to the scaling of H'. Positive

definite matrices H' = [Hke] satisfy e'H'e = -'; Et Hke > 0 where e'- (1,... , 1). Therefore, see

(1.1.1), we have assumed without loss of generality that H' has been rescaled so that

e'H'e = rke =1 foralli, e'=(1,...,1). (5.1.0)

The units for measuring the consumption of goods in "physical" terms are usually defined so that

their base year prices per unit is po = e = (1,... , 1)'. Therefore p~oH'po = 1 for all i by (5.1.0),

implying p'oI1po = 1 where we define ft = iH'. It is convenient for the simplification that we use

as numeraire (p'ftp)1 / 2 implying p'f p = 1 for all "normalized" vectors p. It follows, in particular,

that Po = po/(p0 ftp0 )' / = Po = e and paH'io = I for all i for the base year.

Theorem 5.1. The first-order approximation of log Z as a function of p = G-'(,( - X) yields

the approximation:

Z =, (plp)i =  p) ,(5.2.0)

where positive definite H i are rescaled so that e'H'e = 1 for all i and ft &=H' and gi denotes

the geometric mean.

Proof. We normalize p by p = p/(p'ftp)'/ 2 . Subtracting log(p fp) from both sides of -2log(Z),

and letting p = e + A, we obtain

-2 log(Z) - log(p'ftp) = &,log[(p'H'p)/(p'ftp)] = 6, log(pH'p) (5.3.1)

: = log[(e + A)'H'(e + A)] (5.3.2)

6 ti log(e'H'e + 2A'H'e + A'H'A) (5.3.3)

= log(1 + 2A'HI'e + A'H'A). (5.3.4)

As a first order approximation of a natural log, set log(1 + e,) -i.

-2log(Z) - log(p'/7p) &I[(2A'H'e) + (A'H'A)] = 2A'He + ARA (5.4.1)

(1 + 2A'Te + A A) - 1 (e + A)'/(e + A) - 1 (5.4.2)

ATI /I- I = I - 1 = 0 , (5.4.3)
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where p'ftp = 1 was shown in comments following (5.1.0). Therefore, the approximation of Z(p)

is given by (5.2.0). 1

Little, of course, is known about the utility functions of individuals or how they vary about t.

For the experiment we are about to describe, our particular choice of distribution for hi = ffHip, is

designed to show that the approximations of Z(p) and hence G(p) = -a(log Z)/ap are good ones

for variable p in the neighborhood of some fixed po = (1, 1,.=..,)' - e even if the H' for individuals

i were to vary a lot. In Table 4, prices pt for the years t = 1961 to 1982 relative to base year 1972

prices po = e, are tabulated. For p in the neighborhood of po = e, the values of hi = ffH'p will

obviously be distributed around the mean pftp = 1 with a very low standard deviation, because

p'OH'po = 1 for all i. The vector of prices for 1982 differed the most from the base year with some

prices differing by more than 30%. Therefore Pt for t = 1982 was selected as an extreme case of Pt

for our illustrative example.

The following experiment was then made. The symmetric matrix, denoted ft in Table 1, was

inverted to produce an M and a thousand cases of random M i were generated by independently

varying each symmetric pair Mkl about Mke by (1 + O)Mkt where 0 was binomially distributed

with mean 0, and standard deviation .1, and maximum range -. 2 < 0 < 2. Three of the thousand

cases were dropped because M' turned out not to be positive definite. The inverses [M'1 a H'

were then computed and H' replaced by rescaled H' so that e'H'e = 1. We will now call /H, the

average of these H' and denote by p pt/(ptfpt) 1/2 where pt is the price vector for year 1982.

This makes the mean of pH'1 = 1. The standard deviation of 1pH'p for the sample of 997 cases

turned out to be less that .05 or 5%. For our analysis, we exaggerated the standard deviation of

hi = pH'p to be 10% instead of 5% and to have a maximum range of 20% about their mean of 1.

If 5% instead of 10% were used in Theorem 5.2 below, the error c would have been negligible.

Theorem 5.2. Let p = pt/(p trpt). If the distribution of hi = (p'Hip) > 0 is binomial with

mean of 1, standard deviation = .1, and a range .8 < P'H'p <_ 1.2, then the percent error in the

approximation of Z by (p tfpt)-1 /2 is less than 0.5%:

-2log(Z) = log[(1 + e)(p'fip)] where El <0.5%. (5.5.0)

Proof. We seek an error bound for c. From (5.5.0) and (5.2.0),

log[(1 + c)(p'ftpt)] = Cj[log(pt 'pt)], (5.6.1)

log[(1 + c)] = ej[log(pH'p)j , P = p/(p' -p) 112 , (5.6.2)

Our task is to prove jej < .005. We assumed that hi = p'H'p, roughly speaking, has a truncated

normal distribution with mean of 1, a standard deviation less than .1, and .8 < hi < 1.2, namely

we assumed it to be the binomial distribution with values (.8, .9, 1.0, 1.1, 1.2) and corresponding

probabilities (1/16,4/16,6/16,4/16,1/16). For this experiment, we therefore have:

log(1 + C) = 1log.8 + log .9 + log 1.0 + - log 1.1 + -log 1.2 , (5.7.0)
16 16 16 16 16
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with an error I= .00505. We assert without proof that any continuous unimodal distribution
with same mean, standard deviation, and truncation would yield about the same error jej _< .005. 1

Because log(Z) where Z is the disutility function is so closely approximated by - . log (P tpt)

for reasonable variability of ptH'p, we apply the approximation to

-a(log Z)/ap to obtain our approximation for the key factor G(p) of the demand function:

G(p) = 4,(p'U'p) 1
. H'p = -a(log Z)/ap (5.8.1)

-a[log(pIfp)]/ap = (p'flp)- 1 - ftp for all p near p0. (5.8.2)

Hence the approximations:

v , (p'fp)-I 
. ftp, p - (v'Mv) - 

. MV, (5.8.3)

where M --ft1 and v = St - Xt. We now substitute these approximations into various demand

function theorems and summarize them here:

Demand functions of individuals with income I (Theorem 1.1):

Si - X = (p'S' - I)(p'Hip)-1 . H'p (5.9.0)

where 1. <I < I* = pSi.

The approximation for Theorem 1.3, the expected demand function of individuals whose income

is I:

- XI = (pS - I) ,(p'Hp)-l. Hpp _. (p'9 - I) (p'fp)-i. f1p (5.10.0)

where max I* = I < I < I** = minp'S', H' rescaled so that e'H'e = 1 and ft = ei H'.

The approximation for Theorem 1.5, the expected per capita demand function:

, - X = (p'S - -)C,(p'H'p)-1
. -H'p -- (p'S - I)(p'FIp)- ' . f1p (5.11.0)

where << I**.

The approximation for Theorem 2.9, the utility function Ot = Uf(X) for period t which

implies the per capita demand function (5.11.0) is:

C,= -g,(p'Hp)-1/ 2  (5.12.1)

= _(p'rfp)- 1/2 = (vIMv)l/ 2  (5.12.2)

-_[( _ fXt), M( _ ft)I'/ 2, (5.12.3)

where M = ft- and gi denotes the geometric mean for H' in the population urn. We now apply

the approximation (5.12.3) to Theorem 3.2, after rescaling for population size.
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Theorem 5.3. The equilibrium problem is approximately equivalent to solving the concave pro-

gram:

max U(X) -" 1 y -[(St - X,)'Mt (S, - Xt)]1 1 2 , (5.13.0)
t

subject to (Xt,Yt) > 0 and the primal Bow conditions t = 1,... , T :

BtYt < Dt-lY- + kt (5.13.1)

-AtYt +Xt S ft (5.13.2)

where St,Xt,Yt are aggregate quantities, and Mt = A 1 , At = CiHt, and Hi have been rescaled

so that E. EtHt(k,t) = 1.

EMPIRICAL EVIDENCE OF LINEARITY OF THE DEMAND FUNCTION AT

FIXED PRICES

M. Avriel in his studies [2] convoluted the income distribution with average observed personal

consumption data for over fifty commodities as a function of average observed income per person

at various household income levels. More recently, one of the authors, McAllister, repeated the

same experiment with more recent survey data for certain key commodities. For their studies a

distribution of income for future periods was assumed to be a certain known function of attained

per capita income, namely (a) that Ck(l), the average of consumption of individuals at income

I at fixed prices p of commodity k will not change in the future; (b) that per capita income I

may increase with time; and (c) that the distribution of income about I will retain its same shape

when rescaled proportional to !. The base year distribution was based on survey data. They then

determined per capita consumption as a function of per capita income by the convolution formulas

(1.10.1) and (1.10.2). The resulting per capita demand functions turned out to be remarkably

linear at fixed prices over a wide range of per capita income. See references [9, 2, 211.

Tables 2A and 2B tabulate for survey years 1972-73 and 1980-81 the average consumption of

U.S. per person in various household income classes of Food, Clothing, Housing, Housing Oper-

ations, Transportation, Recreation, Personal Care, and All Other. Each of these 8 categories of

consumption k was plotted against the average income used for consumption per person in each

household income class. See Figures 1 to 8 immediately following Tables 2A and 2B. Before plot-

ting, however, the average consumption per person in dollars in each category was divided by its

survey year price thereby converting the units for measuring the amount of consumption to "phys-

ical" units. In order to exhibit the plots for the two survey years for each category and make them

on the same graph comparable, the average income per person in each household income class for

the 1980-81 survey in 1980$ was deflated to 1972$. Prices used for converting the consumption in

survey year dollars to "physical" units can be found in Table 4. The units for each category k are

chosen so that price in 1972-73 for each k is unity. Prices for other years are deflated to 1972$.

Since the vector of prices in each survey year is fixed, the regression of average consumption

of category k per person in a household income class versus average income per person should be
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linear for "the range of income of interest" according to Theorems 1.2 and 1.3 or its simplified

form for estimating its parameters, (5.10.0). The reader is encouraged to ignore the trend lines on

Figures 1 to 8 (which will be explained later) and to study the sixteen sets of plotted points and

judge for himself how linear they are for these very broad categories of consumption.

Tables 3 and 4 tabulate per capita consumption and prices by category in the years 1961 -

1982. We found the family household data, Tables 2A and 2B, somewhat inconsistent with per

capita data of Table 3 possibly because they came from different types of surveys. It seemed best

to use the graphs of Tables 2A and 2B only for the purpose of extrapolating a guess of S. Using

this guess, the data of Tables 3 and 4 were then used to estimate a positive definite H.

I

Estimating S. According to Theorems 1.2 or 1.3, the expected demand function of persons

at various income levels is linear in income up to a level that some individuals can buy their

satiation vector. If we assume for te moment that this is true empirically and the income level

just sufficient to buy the expected satiation vector pS is known (and not much different for different

individuals i), then the satiation value 9(k) for the k-th category could be found by reading off the

ordinate value when the abscissa is equal to ps. Since the price vectors for the two survey years

are slightly different their expected satiation income pS in 1972$ could be different, but it is not

too unreasonable to assume for purposes of roughly estimating S that the two expected satiation

incomes are equal.

With this rational in mind, straigh, lines were fitted to the data for survey years 1972-73 and

1980-81. The two straight lines shown on Figures 1 to 8 for each category k are "eyeball" fits to the

data with greater weight given to the high end. It was assumed that at some very high income level

the ordinates of the two fitted lines for eacil category k would be sufficiently close to one another

that making the two ordinate values equal woald distort very little the fits to the observed data

at the much lower income levels. We arbitrarily pegged this high per capita income level to be

$25,510, an income level about equivalent to that of a three person household income of $200,000

in 1987 dollars. Therefore, the abscissa where the two lines intersect is at $25,510. Their common

ordinate value is the estimate of S(k). This was done for each k except for k = Recreation whose

trend line in 1972-73 was ignored because it had a radically higher slope from that of 1980-81. On

Figure 8 only one trend line is shown; this means that two trend lines were estimated to be the

same. The estimates for g (k) are tabulated in Table 1.

Admittedly this is a pretty crude "eye ball" way to estimate S, nevertheless the resulting linear
fits appear to be reasonably good in most cases. The real test, however, is not how good is the I*

estimate of S but how good is the per capita demand function (5.11.0), found using this estimate

of S and price and per capita consumption data in various years to estimate /.

Estimating the positive definite matrix F = M - '.

The values estimated for the elements of matrix /A are also tabulated in Table 1. The matrix
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I

H = [Ri] was estimated by a technique of solving a semi-infinite linear program recently developed

by Hu Hui [10] that finds a least square fit under the restrictions that A? be symmetric, positive

definite and EE/ .= 1. The least square fit was made to (5.11.0) after multiplying the equation

by pAp. The source data for this estimate was (a) the guess of satiation levels S described above,

and (b) the observed Xt, which we denote by It, and observed prices pt from the national income

and product accounts of the U.S. for years t from 1961 to 1982. Per capita income was assumed

to be the observed values it = p'4Xt. Observed X, which are indices of physical quantities of

consumption, are tabulated in 1972$ in Table 3 for each of the eight categories for each year t from

1961 to 1982. The corresponding prices pt for these items deflated to base year 1972 prices are

tabulated in Table 4. The predicted values of It, using the per capita demand function (5.11.0)

with the estimated parameter values given in Table 1, are tabulated in Table 5 for each of the

22 years. A comparison of how well predicted It compares with observed X can be made by

comparing Table 3 with Table 5 or by comparing the solid line curves with the broken line curves

in Figures 9 to 16 immediately following Table 5. Note the excellence of the fit. The average

percent error of fit can be found at the bottom of Table 5.

The average price, after the price vector pt is normalized by using (pftpt)1 /2 as numeraire,

are tabulated in the last column of Table 4. It can be seen that these differ only slightly from unity,

which would have been their average, had they been normalized using average price as numeraire.

Thus an investor would be quite indifferent as to which of the two ways is chosen to normalize

future prices before calculating a rate of return.
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Table I

ESTIMATED DEMAND FUNCTION: S -Xt -

Entries in columns below are estimated tkt x 1000 for k> I

House Recrea- Per.

Food Cloth Housing Oper. Transp. tion Care Other

k Est. f = (1) (2) (3) (4) (5) (6) (7) (8)

(1) Food 2666 30

(2) Clothing 1970 1 35

(3) Housing 4670 7 33 77

(4) House Oper. 2050 - 6 -14 20 110

(5) Transp. 3479 10 9 8 54 54

(6) Recreation 2253 18 -17 - 2 - 3 20 56

(7) Per. Care 526 12 20 - 7 -77 - 1 - 1 97

(8) Other 7340 16 15 54 49 32 23 -18 145

Entries fAt above the diagonal = &0 below the diagonal

pt = observed price vector (period t) from time series (Table 3)

ft= observed per capita consumption vector from time series (Table 4)

it = observed per capita total consumption income = ptfX (Total Column, Table 4)

9 = estimated per capita satiation vector

ft = estimated positive definite symmetric matrix*

Xt =per capita consumption vector predicted by demand function

* Estimated by a method developed by Hu Hui that yields least square fit subject to ft being positive

definite [10].
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Figure 1

FOOD, TOBACCO, ALCOHOL EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION

= 1972-73 SURVEY

0 = 1980-81 SURVEY (DEFLATOR-2.0375)
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Figure 2 vs

CLOTHING EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION

o = 1972-73 SURVEY 0
0 = 1980-81 SURVEY (DEFLATOR=.385
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Figure 3

HOUSING EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION

o =1972-73 SURVEY
0 = 1980-81 SURVEY (DEFLATOR= rt.9979)
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Figure 4

HOUSEHOLD EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTIONS
0 III
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Figure 5

TRANSPORTATION EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION

o = 1972-73 SURVEY
0 = 1980-81 SURVEY (DEFLATOR=2.196)
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RECREATION EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION

o =1972-73 SURVEY 0

"o = 1980-81 SURVEY (DEFLATOR=1.51935)
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Figure- 7

PERSONAL CARE EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION

o = 1972-73 SURVEY
* = 1980-81 SURVEY (DEFLATOR=2.08695)
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Figure 8

OTHER EXPENDITURES
AS A FUNCTION OF PERSONAL INCOME FOR CONSUMPTION

o = 1972-73 SURVEY
"o = 1980-81 SURVEY (DEFLATOR=2.08) 0

do i

TOTAL INCOME FOR CONSUMPTION (19'72 DOLLARS)
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Table 3

rtaW CD3Ufl MR MM N Um (1972$)

HO"S.

YEll oD0 (1 H5DG OEM. TRM. RE ACIN CAE mu TOTAL

1961 700 203 448 216 327 178 67 429 2566

1962 699 208 465 224 337 186 71 432 2622

1963 699 209 480 231 347 194 71 446 2677

1964 712 222 496 246 360 203 74 470 2783

1965 732 228 516 255 378 217 77 489

1966 743 239 533 271 396 244 80 506 3014

1967 748 236 550 275 413 254 82 522 3O8

196 766 244 570 282 440 268 84 544 3200

190 775 247 592 286 467 279 83 567 3296

1970 789 241 605 280 478 289 83 586 3351

1971 785 249 621 279 503 293 80 603 3413

'1972 7% 264 649 297 541 315 82 622 35%

1973 785 280 675 317 568 342 82 635 3664

1974 774 274 692 305 557 350 78 635 3665

1975 787 282 709 285 564 362 73 648 3710

1976 818 293 736 291 600 384 72 671 3867

1977 838 304 766 306 631 406 72 696 44.

1978 836 329 803 317 662 433 74 712 4166

19M 843 341 813 328 655 450 74 735 4239

198 85 342 826 321 611 452 73 745 4224

1961 852 362 848 318 605 473 71 762 431

L962 852 364 860 302 606 474 68 778 4304

*bamse y,

SOL=: NoiniJ. LZm and Pradcw AccancR., spedl supplom to tr. Sui- of Qirrent
usms sr.Staistlc Tabi publi.sd Sep 1961 for yam 1929-76, 1976-79 and

Revised Etim published July 1983/Vol. 63, ., 7. Tabla 2.4 Perswal
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Table 4
pt OSlD tIaCS BY TZ3I hETlV1 TO BASI TM 1972

BY KIu& CATIOtLU

HOUSE RECREA- PER.
YEAR FOOD CLOTH HOUSING OPEl. TRANSP. TION CARE OTHER et

1961 .97 1.01 1.07 1.05 1.08 1.07 L.03 .86 1.03

1962 .96 1.00 1.06 1.04. 1.08 1.07 1.02 .88 1.02

1963 .96 1.00 1.06 1.06 1.04 1.07 1.03 .91 1.02

1964 .97 .99 1.05 1.04 1.06 1.07 1.02 .89 1.02

1965 .97 .98 1.04 1.03 1.06 1.07 L.03 .92 L.01

1966 .99 .98 1.03 1.03 1.05 1.05 1.03 .92 L.OL
1967 .98 1.00 1.02 1.02 1.04 1.04 1.03 .93 1.O

1966 .98 1.02 1.01 1.03 1.03 1.04 1.04 .96 L.01
1969 .99 1.03 1.00 1.02 1.02 1.03 1.02 .97 1.01

1970 1.00 1.02 .99 1.02 1.01 1.01 1.02 .98 1.01

1971 .99 1.01 1.00 1.01 1.02 1.00 1.01 .97 1.00
*1972 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1973 1.05 .98 1.00 .97 .97 .97 .99 1.01 1.00

1974 1 .08 .95 .98 .98 .99 .93 .99 .99 1.00

1975 1.07 .91 .98 1.01 .99 .91 1.03 1.00 1.00

1976 1.05 .90 .99 1.03 1.01 .90 1.05 1.03 .99

1977 1.04 .88 1.00 1.00 1.03 .88 1.06 1.04 .99

1978 1.06 .84 1.00 1.01 1.02 .85 1.07 1.06 .99

1979 1.07 .80 1.01 .99 1.06 .81 1.07 1.07 .98

1980 1.05 .75 1.02 .97 1.12 .79 1.06 1.07 .97

1981 1.05 .71 1.03 .97 1.13 .77 1.06 1.07 .97

1982 1.04 .69 1.05 .99 1.09 .77 1.10 1.08 .97

* base year

SOURCE: National Income and Product Accounts, special supplement to the Survey
of Current Business Statistic Tables published September 1981 for
years 1929-76, 1976-79 and Revised Estimates published July 1983/VoL.
63, No. 7. Table 2.4 Personal Consumption Expenditures by Type of
Expenditure. Price index is derived by comparing expenditures in
current dollars in Table 2.5 with those in Table 2.4.

e1Xt average value of components of -t p P /(P;RPt)
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Table 5

j pu CTW a-SU IWLC PUCAPITA UI TEA (1972$)
St NI A CWTNGOLIIS SE (M MUD IUWTlOU

HOUSE PER.
YEAR FOOD CLOTH HOUSING OPEl. TANSP. RECREATION CARE OTHER

1961 703 177 431 228 322 L89 68 5

1962 713 194 454 219 327 Las 89 443
1963 723 200 466 225 351 196 85 430

1964 718 226 498 227 362 181 97 477

1965 728 237 534 255 382 194 77 -85

1966 731 242 558 267 408 219 69 523

1967 744 228 562 295 425 245 47 536

1966 763 236 587 293 456 271 52 543

1969 772 242 601 288 475 287 75 556

1970 775 249 615 281 492 304 78 558

1971 785 246 616 286 493 315 86 585

1972 798 271 645 285 534 325 L0 598

1973 783 273 663 337 578 342 77 633

1974 767 282 682 312 556 346 81 641

1975 778 299 705 285 573 363 71 640

1976 812 314 735 260 595 397 96 659

1977 835 317 763 291 610 423 80 706

1978 839 334 799 312 645 442 64 723
1979 845 335 821 334 636 459 54 757

1980 852 344 838 329 592 444 72 754

1981 859 359 850 311 599 451 90 766

1982 864 357 837 315 643 469 57 760

2666 1970 4670 2050 3479 2253 526 7340

Avg. Z
lerrorl .9 3.4 1.7 3.4 2.1 3.8 L7.1 Z.Z

Z jerrorj - 100 Ittk "1tk/tk ' Xtk are tabulated In Table 3.

X. computed using per capita demand function given in Table 1.

Graphs that follov this Table comparing X with X are
by Isabel Pereira.
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FIgure 9

FOOD, TOBACCO. ALCOHOL EXPENDITURES PER CAPITA
FOR YEARS 1961-l982
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Figure 10

CLOTHING EXPENDITURES PER CAPITA
FOR YEARS 1961-1982
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Figure 11

HOUSING EXPENDITURES PER CAPITA
FOR YEARS 1961-1982

OBSERVED
FIT QAsed on demand function)
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Figure 12

HOUSEHOLD OPERATIONS EXPENDITURES PER CAPITA
FOR YEARS 19G1-1982

OBSERVEDFIT.L(based on demand functon)
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Figure 13

TRANSPORTATION EXPENDITURES PER CAPITA
FOR YEARS 1961-1982
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Figure 14

RECREATION EXPENDITURES PER CAPITA
FOR YEARS 1961-1982
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Figure 13

PERSONAL CARE EXPENDITURES PER CAPITA
FOR YEARS 1961-1982
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Figure 16

OTHER EXPENDITURES PER CAPITA
FOR YEARS 1961-982
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ABSTRACT

Given a general dynamic equilibrium formulation of a time staged model, we seek conditions on the
distribution of utility functions of individuals which imply the model is equivalent to a mathematical program.

Gorman and others long ago have observed that Engel curves of average consumption as a function
of income at fixed prices are remarkably linear over a broad range of income of interest which tapers off
at both ends of this range. We reproduce this phenomenon by assuming (a) that a general polynomial of
the second degree has enough parameters (coefficients) to globally represent the utility functions of
individual consumers, and (b) the distribution of utility functions that individuals have is independent of the
income they happen to have. We achieve the latter by assigning values to the parameters of the utility 0
functions by a random drawing with replacement from a "population urn' containing a representative sets
of the parameters. We then derive the functional form of the per capita demand function and necessary
and sufficient conditions for its integrability.

Finally, we show in the context of the time staged model, that when the population is not too
polarized as to its tastes at fixed income levels, a concave objective function always exists, which
maximized subject to the physical flow constraints, implies the equilibrium conditions.
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